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ABSTRACT 
 The coefficient of prediction 2

jP  is derived from the PRESS (prediction sum 

of squares) statistic just as 
2
jR  is derived from SSE, the error sum of squares.  While 

2
jR  measures quality of fit, 

2
jP  measures quality of point predictions.  Unlike SSE and 

PRESS, 
2
jR  and 

2
jP  are bounded, relative measures ideally suited for statistical 

modeling.  This paper describes the limits, properties, how 
2
jP  differs from other 

criteria, and the rationale for its importance.  This knowledge enhances one’s 
understanding of what constitutes properly specified statistical models.  An example 

illustrates the behavior and practical applications of 
2
jP  in model specification analysis. 

 
 
INTRODUCTION  

 Consider the sample least squares equation, 
         Ŷ  = Xb,        (1) 
where X is a data matrix of full rank, b is a vector of regression coefficients, and Ŷ  is a 
vector of fitted values.  An evaluation of (1) is obtained from the following statistical 
modeling criteria: 
(a) Goodness of fit criteria include measures such as 

2
jR  and adjusted 

2
jR (Haitovsky, 

1969).  
(b) Smallness of prediction variances criteria (the mean square errors of prediction) 
include measures such as Mallows Cp (1973), Akaika AIC (1969), and Amemiya PCj 
(1980). 
c)Goodness of prediction criteria include measures such as "split data analysis," 
PRESS (Hocking, 2003), and 2

jP . 

The subscript  j  notation denotes the number of X-variables in the model. 
Observe that quality of predictions is measured by two criteria.  The statistics 
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in (b) are primary concerned with the inflation of prediction variances (Maddala, 
2001).  The statistics in (c) are confined to measuring the accuracy of out-of-sample 
point predictions.  Although related, these statistics sometime behave differently than 
the statistics in (b).   An example illustrates the need for both criteria.  It illustrates 
that the inclusion of a multicollinear variable may diminish the accuracy of point 
predictions while improving interval predictions by reducing the size of their 
prediction variances.  Hence, both criteria are needed in the proper specification of a 
statistical model.  This example also proves the contrary to statements found in 
textbooks that multicollinearity is not harmful to point predictions.  Several authors 
realize the importance of 

2
jP  and are currently using the measure in validation and 

statistical modeling.  (Myers, 1990, also Montgomery, Peck and Vining, 2001).  
Regrettably, the literature is void of the statistical properties and limits of 

2
jP .  

Therefore, it seems noteworthy to describe these properties, how 
2
jP  differs from other 

criteria, and the rationale for its importance in statistical modeling. 
 
 
THE  P2  STATISTIC    
      Let an out-of-sample prediction )(̂iY  be computed by using a "new" observation in 

(1).  Since Yi of the holdout observation is not used in fitting the regression model, the 

out-of-sample predicted value )(̂iY  is independent of Yi in calculating the PRESS 

residual  

          e(i) = Yi - )(̂iY        (2) 

This "leave one out" process is repeated n times.  Computationally, PRESS residuals 
in (2) are obtained from  
 
           e(i)  =  ei /(1-hii ),        (3) 
 
where ei are ordinary least squares residuals from (1) and hii are the diagonal elements 
of the hat matrix. (Hoaglin and Welsch, 1978).  Observe, PRESS residuals are 
weighted least squares residuals with 1/(1-hii) being the weights. 
     Properties of hii.  The diagonal elements hii in (3) possess the following properties: 

           1/n ≤  hii ≤ 1.0          and           ∑
=

n

i
iih

1
=  p 

(Belsley, Kuh, and Welsch, 1980).  All diagonal hii values are between 1/n and one, 
given that (1) has an intercept.  Also, the sum of the diagonal hii values equals p, the 
number of regression coefficients in (1). 
 
 Hat Matrix.  The hat matrix is an extremely efficient n x n projection matrix defined as 
 
          [hij]  =  H  =  X(X'X)-1X';                                                                        (4) 
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where X is an n x p data matrix of full rank and (X'X)-1 is the traditional least squares 
inverse matrix.  Knowing that the vector b in (1) is   
          b  =  (X'X)-1X'Y       (5) 
 
then (1) can be written as  
 
          Ŷ   =  HY        (6) 
 
It is important to know that the hat matrix in (4) is a projection matrix.  Therefore, its 
diagonal elements hii usually increase (can never decrease) when an additional variable 
enters the model (Hoaglin and Welsch, 1978). 
 
PRESS.  The PRESS statistic (Walls and Weeks, 1969) is the sum of the squared 
PRESS residuals; 

          PRESS  = ∑
=

n

i 1
( iY  - )(̂iY 2)      =  ∑

=

n

i
ie

1

2
)(      (7) 

The independence of iY and )(̂iY in (7) enables the PRESS statistic to be a true 

assessment of the validity or prediction capabilities of the regression model.  PRESS 
statistics are similar to the error sum of squares in regression analysis,  

          SSE  = ∑
=

n

i 1
( iY  - iŶ 2)      = ∑

=

n

i
ie

1

2
(8) 

While SSE uses fitted values iŶ , PRESS in (7) uses out-of-sample predicted values 

)(̂iY .  Hence, just as SSE is used in calculating the coefficient of determination, 

           
2
jR = 1 - (SSE / SST),      (9) 

 
PRESS is used in calculating the coefficient of prediction,  
 
           

2
jP   = 1 - (PRESS / SST);      (10) 

 
where  SST = Σ( iY  - Y 2) .  By dividing the PRESS statistic by SST and subtracting the 

ratio from one, 
2
jP  is similar to 

2
jR  both are relative measures.  

 
The Behavior Of 2

jP . 
  The PRESS residuals e(i) in (3) are a function of least squares residuals ei and 
diagonal elements hii of the hat matrix.  Since the hat matrix is a projection matrix, its 
diagonal elements hii usually increase (never decrease) when additional variables enter 
the model (Myers, 1990).  Let k = p+1, then an incoming variable will cause PRESSk  ≤  
PRESSp and 

2
kP  ≥ 

2
pP  only if the least squares residuals ei in (3) decrease 
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proportionally more than the increase in the weights 1/(1-hii).  Therefore, the 
2
jP  

criterion incurs penalties for including irrelevant variables and for deleting relevant 
variables.  These penalties are assessed differently than penalties assessed by other 
model specification criteria. 
 
Irrelevant Variables.  A decrease in 

2
jP  signals the inclusion of an irrelevant variable 

and that the model is becoming overspecified.  Hence, the inclusion of a multicollinear 
variable may cause the accuracy of point predictions to diminish.  This concept is 
illustrated in the following example and contradicts statements in many textbooks that 
multicollinearity is not harmful to point predictions. 
 
Limits of 2

jP . Observe that out-of-sample observations are not used in deriving the 

statistical model.  Therefore, independent, out-of-sample predictions )(̂iY  are not as 

accurate in predicting Yi as in-sample fitted values.  Hence, 
2
jP  can not exceed the 

expected value of the determination coefficient 
2
jR , adj

2
jR  and Amemiya's jPC .  

Also, since e(i) =  ei /(1-hii ), PRESS residuals in (3) are weighted least squares residuals 
causing  e(i)  >  ei.  This, in turn, causes PRESSj  >  SSEj,  and 

2
jP  <  

2
jR .  Again, the 

expected accuracy of out-of-sample predictions measured by 
2
jP  cannot exceed the 

accuracy of in-sample estimates. 
 
 
HOSPITAL  STAFFING  EXAMPLE        
 This example illustrate that 

2
jP  may behave differently from other modeling 

criteria.  Monthly labor hours (Yi) for 17 U.S. Hospitals are analyzed using data from 
Navy Manpower and Material Center, 1979.  X1 is average daily patient load;  X2 is 
monthly X-ray exposures; X3 is monthly occupied bed days; X4 is eligible population  in 
area X5 is average number of days a patient stays in the hospital.  By employing the all 
possible regression algorithm, the various subsets of the five variable model are 
analyzed.  Equations possessing the maximum value for the criteria in each subset are 
recorded in Table 1.  In addition to 

2
jR  and 

2
jP  other criteria frequently used in 

statistical modeling are the adjusted 
2
jR  Mallows Cp, and Amemiya's jPC  criteria.  

After disregarding Mallows Cp (it is not in a relative-comparable form), Figure 1 reveals 
that the above criteria are larger than 

2
jP .   This is expected since in-sample residuals 

are smaller than out-of-sample residuals.  Notice that within a specific subset, maximum 
2
jP  may not belong to the same equation as the other criteria.     
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Table 1 
Statistical Modeling Criteria 

═══════════════════════════════════════════════

Model
2
jR 2

jR Cp PCj
2
jP variables

-----------------------------------------------------------------------------------------  
 6          0.9908     0.9867    6.000     0.9808    0.9349    X1 X2 X3 X4 X5 
----------------------------------------------------------------------------------------- 
 5        0.9908       0.9877    4.026     0.9832    0.9421         X2 X3 X4 X5 
 5        0.9851       0.9801  10.922     0.9726    0.9624      X1     X3 X4 X5 
----------------------------------------------------------------------------------------- 
 4        0.9901       0.9878    2.918     0.9840    0.9639         X2  X3     X5 
 4        0.9850       0.9816    8.968     0.9758    0.9736      X1      X3     X5 
----------------------------------------------------------------------------------------- 
 3        0.9867       0.9848    4.942     0.9810    0.9639         X2   X3      
 3        0.9848       0.9826    7.294     0.9782    0.9745          X3          X5 
 ---------------------------------------------------------------------------------------- 
 2        0.9722       0.9703  20.381     0.9648    0.9559         X2       ══════════════════════════════════════════════════

Except for 
2
jP  all of the above criteria are a function of the mean square error, MSE 

(Maddala, 2001).  Therefore, Table 1 reveals that within each subset, the equation 
possessing the largest 

2
jR  also possesses the largest 

2
jR  and jPC  and smallest Cp.  

This is often the case.  However, it is not necessary true for 
2
jP .  Equation Y = f 

(X2, X3, X5)  possesses the global maximum/ minimum for all criteria except 
2
jP  and 

2
jR .  Since 

2
jR  is upward biased (never decreases), its maximum is not considered.  

Observe, the global maximum for 
2
jP is located in the two variable subset.  Also 

observe that 
2
jP  =  0.9639 for  models  Y = f (X2, X3)  and   Y=f (X2, X3, X5).  Thus, X5 

adds nothing to the accuracy of point predictions for these models.  Figure 1 illustrates 
that the importance of additional variables diminish as more variables are added to the 
model.  The general configuration of the 

2
jP  curve is always cupped downward--given 

that the full equation is over specified.  
 
 
DISCUSSION  
 Leverage.  As revealed by (3), (7), and (10), 

2
jP  is a function of least squares residuals 

ei and the diagonals elements hii.  These elements are called leverage values and often 
cause 

2
jP  to behave in a manner different from other criteria.  Large leverage hii values 

are caused by extreme X-values in the i th observation and indicate potentially strong 
influence on the statistical model (Maddala, 2001).  Since these hii values are used as 



 
Southwestern Economic Review 
 

154

Figure 1. Model Specification Criteria
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weights in PRESS residuals, observations that have a strong influence on predictions are 
reflected in 

2
jP .    When the global maximum 

2
jP  coefficient does not agree with the 

other statistical modeling criteria, one should investigate possible model 
underspecification.  In the above example, the last four observations are from large 
hospital installations (over 10,000 hours); some reveal unusually large PRESS residuals. 
 By including a dummy variable in the equation, the global maximum / minimum for all 
criteria (including 

2
jP ) focuses on two models:  

          Model                    
2
jR            

2
jR             Cp            jPC             

2
jP    

Y = f (X1, X2, X5, D)    0.9968       0.9957        3.602        0.9941        0.9906 
Y = f (X2, X3, X5, D)    0.9968       0.9957        3.533        0.9941        0.9894 
 
where  D = 1 if Y > 10,000,  zero otherwise.  The significance of the dummy variable 
separates large hospitals into a separate class for more accurate predictions.  Observe, 
the global maximum for 

2
jP  goes from 0.9745 in Table 1 to 0.9906.  Interaction 

variables are insignificant suggesting that large hospitals respond to changes in the X-
values at the same rate as small hospitals.  Of course, knowledge of the subject matter 
must always be used in selecting the most appropriate model. 
 
 

Figure 1 
Model Specification Criteria 
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CONCLUDING  REMARKS 
  Information concerning model specification are abundant in the literature.  
Additional criteria that are used in selecting possible regression models can be found in 
Hocking (1976) and Akaike (1969).  A minimum mean square error of prediction or a 
maximum quality of fit does not guarantee maximum accuracy for point predictions.  
Although related, the accuracy of point predictions and the size of interval predictions do 
not necessary act in one accord.  This is evident from the behavior of 

2
jP  in Table 1.  

An incoming variable may increase the accuracy of point predictions while inflating 
interval predictions; as confirmed in Table 1, the reverse is also true.  Therefore, a 
statistic confined to measuring the accuracy of point predictions also needs 
consideration.  Hence, this study provides a through understanding of what constitutes 
properly specified statistical models. 
      Unlike the PRESS statistics, the 

2
jP statistic is a bounded, relative measure of 

prediction that can be directly compared with other statistical modeling criteria.  This 
statistic utilizes weighted least squares residuals in minimizing the sum of the squared 
PRESS residuals.  Penalties for including irrelevant variables and for deleting relevant 
variables are associated with this statistic.  Observe that 

2
jR  tends to minimize the mean 

square error of fitted observations.  Ameniya's jPC  and Mallows Cp criteria strive to 

minimize the mean square error of prediction.   The 
2
jP  criterion strives to minimize 

PRESS residuals thereby identifying equations that produce the most accurate out-of-
sample point predictions.   By using 

2
jP  additional equations are often identified for 

further consideration in model building.  Observe from (3) that the PRESS residuals in 
2
jP  are a function of both least squares residuals ei and leverage values hii.  Thus, the 

influence of both extreme Yi and Xi values are reflected in this statistic.  The global 
maximum for 

2
jP  may not necessary be the same equation or even in the same subset as 

the other variable selection criteria.  When the global maximum for 
2
jP  differs markedly 

from other criteria (as in Table 1), one should investigate the possibility that the model is 
underspecified.  The PRESS statistic and/or leverage values are available from most 
statistical software packages.  Hence, 

2
jP  is easily calculated from (10).  Given the 

behavior and merits of this statistic, its use in statistical modeling has become 
increasingly popular.  Indeed, 

2
jP  adds another dimension of prediction accuracy to the 

analysis. 
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