
Using Seasonal and Cyclical Components in 
Least Squares Forecasting models 

 
 

189

 
 
 
 

USING  SEASONAL  AND  CYCLICAL  COMPONENTS  
IN  LEAST  SQUARES  FORECASTING  MODELS 
 
Frank G. Landram, West Texas A & M University 
Amjad Abdullat, West Texas A & M University 
Vivek Shah, Southwest Texas State University 
 
 
ABSTRACT 
      Although many articles have been written concerning the improved accuracy of 
combined forecasts, sometimes the obvious is overlooked.  By combining seasonal 
indices and cyclical factors with other explanatory variables, forecasting models acquire 
increased accuracy for out-of-sample predictions..  This paper encourages the use of 
least squares forecasting models with time series components.  It also provides new 
directions for  research in combining forecasts.  This approach to forecasting is also 
compared to other popular forecasting methods.  Surprisingly, the use of seasonal indices 
and cyclical factors in least squares equations does not frequent the literature. 
 
 
INTRODUCTION 
      The decomposition method of separating time series data into the four 
components of trend, cyclical movement, seasonal variation, and irregular fluctuations is 
well known.  Indeed, combining these components in a multiplicative manner is one of 
the oldest methods of forecasting (Barton, June 1941).  However, considerable 
advantages are obtained by including seasonal indices and cyclical factors in a least 
squares forecasting equation: 
            

Ŷt = b0 + b1Xt + b2Sj + b3Ct                                                                                    (1) 
 
where Xt are for trend values, Ct are cyclical factors, and Sj are seasonal indices repeated 
each year.   This approach becomes attractive when compared with other forecasting 
methods.   
      Equation (2) describes the dummy variable approach to quarterly seasonal 
variation: 
 

          Ŷt = b0 + b1Xt + b2D2 + b3D3 + b4D4 + b5Ct,                                               (2) 
 
where Xt and Ct are defined in (1) above;    Dj = 1 if quarter j,     j = 2, 3, 4,     0 
otherwise.   Equations (1) and (2) have approximately the same accuracy.  The dummy 
variable method of including seasonal variation is described in most econometric 
textbooks (Greene, 2000; also Ramanathan, 2002).   Although (1) has the advantage of 
using a single index variable, its applications to forecasting does not frequent the 
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literature.   When describing monthly seasonal variation, the dummy variable approach 
must employ 11 binary variables as compared to the one seasonal index variable in (1).  
This alone has considerable computational and methodological implications.  Time 
series components in unrestricted least squares models are highly conducive to 
judgement modification operations thereby increasing the accuracy of out-of-sample 
forecasts.  Hence, this approach extends the capabilities of combining forecasts using 
unrestricted least squares coefficients as weights (Granger and Ramanathan, 1984).  An 
example is given which compares (1) with other forecast methods. 
 
 
CONCEPTS AND NOTATIONS 
      Although there are exceptions, the accuracy obtained by using (1) over the 
traditional decomposition method conforms to intuition.  Least squares estimates by (1) 
are more accurate than non-least squares estimates from 
 
           Tt*Sj*Ct                                                                                                        (3)  
 
where Sj and Ct are defined in (1) above, and Tt are trend estimates; 
 
           Tt = b0 + b1Xt                                                                                               (4)  
 
     Moving Seasonals.  When using a constant seasonal index, it is assumed the seasonal 
variation is not moving – is not becoming stronger or weaker.  However, if this 
assumption is incorrect or if there is considerable dispersion in the seasonal factors for a 
particular period, a moving seasonal index needs to be constructed. A moving seasonal 
index is described in older textbooks (Croxton and Cowden, 1955) and has been used for 
decades by the U.S. Bureau of the Census.  Moving seasonal indices are used when the 
average seasonal indices do not adequately describe current seasonal variations.  When 
forecasting future Y values, moving seasonal indices may be obtained subjectively.  This 
allows the model to posses judgement modification capabilities.  
 

     Cyclical Movement.  Cyclical factors are computed from the ratio  Ct = YDt /ŶDt, 

  where YDt and ŶDt  
are the actual and trend values of deseasonalized data.  These factors may also be 
obtained subjectively when forecasting future values of Y. 
 
 
COMPARING FORECASTING METHODS 
    In order to fix concepts, the following example is given.  This example 
compares the accuracy of using seasonal and cyclical components in least squares 
models with other forecasting methods.  
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Domestic Car Sales Example. 
      Wilson and Keating (2002) in Business Forecasting use domestic car sales 
(DCS) from 1980 to 1999 in comparing the accuracy of various forecasting methods.  
Figure 1 reveals DCS have little trend but a substantial cyclical movement.  The root 
mean square error (RMSE) for each method is shown in Table 1; where RMSE is the 

square root of the sum of squares error divided by n,  RMSE = (SSE / n)1/2.  A measure 
of goodness of fit is obtained from the historical RMSE.  This includes quarterly data 
from 1980 through 1998.  A measure of goodness of prediction is obtained from the 
holdout RMSE.  This includes quarterly data for 1999.  These quarters are not used in 
deriving the various models and are considered out-of-sample data.   
      Observe from Table 1, the least squares models with constant and moving 
seasonals (methods 9 and 10) are top contenders with regard to the goodness-of-fit 
(historical RMSE) measures.  The least squares dummy variable model and the 
combined forecast model (methods 8 and 11) also performs well.   These models 
perform even better with regard to the goodness-of-prediction (holdout RMSE) 
measures.  
 
 

TABLE 1 
 COMPARING FORECASTING METHODS: RMSE FOR 

DOMESTIC CAR QUARTERLY SALES 
---------------------------------------------------------------------------------------------------------------------- 
Forecasting Method                                                                      Historical RMSE    Holdout RMSE 
1.  Winter's Exponential Smoothing       144.45     61.79  
2.  Holt's With Seasonal       200.46     62.21  
3.  Deseasonalized DCS with DPI 1990-1998*        96.98    87.93  
     Deseasonalized DCS with DPI 1980-1998     190.62    61.25  
4.  Multiple Regression        107.89   162.59  
5.  Time-series Decomposition       195.50  181.20  
6.  ARIMA(1,1,0) (1,2,1)        172.56  120.09  
7.  Combined Winter's and Regression       141.69    53.79  
8.  Dummy Variable Method         91.68     48.65  
9.  Least Squares Constant Seasonals         91.76     48.92  
10. Least Squares Moving Seasonals         30.26     10.32  
11. Combined Methods 5 and 10         25.90     11.07  
------------------------------------------------------------------------------------------------------------------------ 
*Method 3 used 1990 through 1998 data and is not a true comparison  

 
 
 
Least Squares Models With A Moving Seasonal Index.   
 The least squares constant seasonal model (method 9 in Table 1) is described 
by (1) above.  The least squares moving seasonal model (method 10 in Table 1) is 
identical to (1) except moving seasonals St are used for the seasonal indices; 
          

Ŷt = b0 + b1Xt + b2St + b3Ct.                                                                                     (5) 
 
Observe, Yt are the estimated DCS values, Xt are for trend values, Ct are the cyclical 
factors, and St are the quarterly seasonal factors adjusted to equal 4.0 for each year. 
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      Figure 2a reveals the seasonal factors for March are not adequately represented 
by their average.  Therefore, a moving seasonal factor for March is projected for the year 
1999.  This projection may be subjective by deciding whether the future March seasonal 
factor will be more, less, or equal to the previous March seasonal factor.  Other quarterly 
seasonal factors are created subjectively in a similar manner (Figure 2). By observing the 
cyclical movement in Figure 1, one decides whether future Ct values will increase, 
decrease, or remain the same.  A knowledge of the subject matter is imperative in 
subjectively selecting a reasonable value for Ct when forecasting future out-of-sample Y 
values.  Hence, the model possesses judgement modification capabilities in selecting 
future values for St and Ct. 
       
 
 
 
 
 
 

Figure 2a.  March Seasonals

0.85

0.90

0.95

1.00

1.05

1980 1985 1990 1995 2000

Figure 2b.  June Seasonals

0.95

1.00

1.05

1.10

1.15

1980 1985 1990 1995 2000

Figure 2c. September Seasonals

0.90

0.95

1.00

1.05

1.10

1980 1985 1990 1995 2000

Figure 2d. December Seassonals

0.82

0.86

0.90

0.94

0.98

1.02

1980 1985 1990 1995 2000



Southwestern Economic Review 
 
 

194

 
Other Methods.   
In Table 1, method 3 used 1990 through 1998 data when regressing DCS with DPI; 
          DCS = b0 + b1DPI.  
A true comparison requires the data to be from 1980 through 1998. Method 4 regresses 
DCS with the following: 
DPI:  disposable personal income,    DPI2:   DPI squared     PR:   prime interest rate 
Dj = 1 if quarter j,  j = 2,3,4,  0 otherwise,      X:    trend,      X2:   trend squared,  
Index:   University of Michigan Index of Consumer Sentiment 
 

 Ŷi = b0 + b1DPI + b2DPI2 + b3PR + b4D2 + b5D3 + b6D4 + b7Index + b8X + b9X2           
(6) 
 
Method 8 is the dummy variable method described by (2).  The RMSE for method 8 
(also method 4) is downward biased.  The sum of squares error (SSE) in RMSE = 
(SSE/n)1/2 will not increase and usually decreases when an additional variable enters the 
model.  Hence, the more variables use in the model, the lower SSE becomes thereby 
making RMSE lower. 
 
Combined  Forecasts.   By including the multiplicative product described by (3) in least 
squares equations (1) or (5),  increased accuracy is usually obtained (see method 11 in 
Table 1): 
 

               Ŷt = b0 + b1Xt + b2St + b3Ct. + b3Wt,                                                                (7) 
 
where Wt = Tt*Sj*Ct is defined in (3).   Most authors (Bates and Granger, 1969;  
Batchelor and Dua, 1995;  also Bopp, 1985;  Granger, 1989) agree that combined 
forecasts outperform forecasts from a single method.  Hence, a major advantage of (1) 
and (5) is that additional forecasts can easily be included in the least squares equation.   

 
 
  DISCUSSION 

      The inclusion of time series components in least squares models offers a new 
approach to forecasting.  Indeed, using seasonal indices and cyclical factors as 
explanatory variables in least squares models provide an excellent method of combining 
forecasts.  The accuracy of these models is usually increased when a moving seasonal 
index, rather than a constant seasonal index, is employed.   
 
Unrestricted Least Squares.  Granger and Ramanathan (1984) argue that combining 
forecasts from several models will outperform forecasts from a single model.  When 
biased forecasts are included in a least squares equation, the intercept adjusts for the 
bias.  Hence, it is important to use least squares equations with an intercept.  The 
authors totally agree with Granger and Ramanathan that the common practice of 
obtaining a weighted average of alternative forecasts should be abandoned in favor of 
least squares equations with an intercept.  However, the authors carry the research one 
step further by using time series components that are conducive to judgement 
modifications. 
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Judgement Modification is including the forecaster’s knowledge of the subject matter 
into the model.  Indeed, Armstrong 1978, Mahmoud 1984, and Young 1982, to name a 
few, state that judgement modification is a vital and necessary ingredient of forecasting.  
It has been shown that judgement modification should modify the components of a 
forecast and not the computed forecast value itself (Lawrence, et al. 1986).  Edmundson 
(1990) uses a modified trend in obtaining the computed forecast value.  The modification 
is structured by using graphs to help subjectively select the slope of the trend.  Since past 
influences do not necessary continue in the future, judgement modification is an 
excellent method of increasing the accuracy of out-of-sample predictions.  Although 
moving seasonal indices have been used for decades, subjective estimates of moving 
seasonal indices in least square forecasting models are unique.  This judgement 
modification procedure is an excellent way of increasing the accuracy of out-of-sample 
forecasts.  The same rationale can be made for using subjective cyclical indices. 
 
Model Specification.  By using unrestricted least square, combined forecasts models 
always produce the most accurate in-sample fitted values. (Granger and Ramanathan 
1984).  However, this superior accuracy does not always continue with out-of-sample 
predictions.  This is because influences of the past do not necessary continue in the 
future.  It is our contention that these suboptimum out-of-sample performances are 
caused by specification errors rather than estimation errors.  Therefore, attention is 
directed to how the inclusion of time series components in unrestricted least squares 
equations enhances combined forecasts.  This enhancement comes from the inclusion of 
time series components that are highly conducive to structured human judgmental 
modifications. 
 
 

 CONCLUSION 
      This paper provides new directions for research in combining forecasts.  
Although the use of unrestricted least squares in combining forecasts yields superior 
accuracy for in-sample fitted values, it sometimes yields suboptimum accuracy for out-
of-sample predictions.  This paper advocates treating suboptimum performances as 
specification errors rather than estimation errors.  In doing so, the use of time series 
components is highly recommended.  Since time series components are highly conducive 
to judgement modifications, their inclusion in combined forecast models should be 
seriously considered.  Indeed, their inclusion helps insure increased accuracy for out-of-
sample predictions.   
      Be cognizant that a single monthly seasonal index variable accomplishes what 
takes 11 dummy variables to achieve.  This  alone has far reaching methodological 
implications.  Therefore, the inclusion of time series components allows least squares 
forecasting models to acquire increased accuracy, broad applicability, and judgement 
modification capabilities.  These attractive features will make the use of time series 
components in least squares equations increasing popular among forecasters. 
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