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ABSTRACT 

This study brings an awareness of five mistakes frequently found in forecasting.  

In doing so, a least squares model is derived that predicts new homes sold.  This 

model employs current predictive innovations that have consistently out-

performed other forecasting models.  By comparing the out-of-sample accuracy 

of this model with others, frequent errors are noted and evaluated.  Hence, our 

objective is to promote an understanding and awareness of common mistakes 

made in forecasting.  We also bring a summary of current innovations used to 

enhance the accuracy of predictive models. JEL Classification: C53 

 

 

INTRODUCTION 

In this study, new homes sold are forecasted revealing the predictive 

economic status of our US economy.  New homes are newly constructed homes 

that have never been occupied.  (http://research.stlouisfed.org/fred2/data 

/HSN1FNSA.TXT).  However, we begin with a discussion concerning the 

innovative least squares, time series decomposition model that is superior to 

traditional decomposition operations.  This model also consistently outperforms 

other forecasting models with regard to both in-sample and out-of-sample 

accuracy (Landram, 2008a).  Hence, attention is directed to this extraordinarily 

accurate model.  Next the five common mistakes made in forecasting are 

discussed.  In an effort to fix ideas and clarify concepts the new homes forecast 

is then given.  This leading indicator helps predict the depths and duration of our 

economic decline. The example also illustrates the differences between in-

sample and out-of-sample statistical measures.  A discussion and concluding 

remarks follow. 

 

 

MODEL DERIVATION AND EVALUATION 
Consider the following least squares time series model 
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     Y
^
t = b0 + b1Tt + b2Ct + b3Sj + b4TtCtSj    

 (1) 

 

where Ct and Sj represent cyclical and seasonal components obtained from the 

decomposition of a time series.  The trend component is represented by any 

polynomial form of Tt =b0+b1Xt, where Xt, = (1, 2, ..., n) and TtCtSj represents 

(Tt*Ct*Sj.)--the multiplicative form of the decomposition  Observe the accuracy of 

(1) is superior to the traditional time series decomposition since it contains both 

additive and multiplicative variables placed in a least squares model.  Further 

accuracy is usually obtained by employing judgmental modification-event 

modeling operations (Bunn and Wright, 1991), (Lawrence, et al., 1986).  

Enhancements are also obtained by combining forecasts.  It is widely believed that 

judgmental modification and combined forecasts are essential elements in 

forecasting (Bates and Granger (1969), Batchelor and Dua. (1995), Fang, (2003).  

For more on judgmental modification see Blattberg and Hoch (1990), Manganelli 

(2007). 

     The inclusion of an event modeling variable Dj, which indicates periods of 

economic contraction, is also included together with the interaction term DjTt:  

 

     Y
^
t = b0 + b1Tt + b2Ct + b3Sj + b4TtCtSj + b5Dt +  b6Dt Tt  

 (2a) 

 

Observe (2a) represents two forecasting equations.  For example, starting in 2005 

let Dt = 1, otherwise Dt = 0. Note, (2a) becomes equation (1) before 2005.  Starting 

in 2005, (2b) is realized:  

 

     Y
^
t = [b0 + b5] + [b1 + b6]Tt + b2Ct + b3Sj + b4TtCtSj.  

 (2b) 

Notice the intercepts differ as do the slopes for Tt. in (2b) and (1). 

 

 

Common Mistakes In Forecasting 

 

1. Statistical measures used in explanatory models are incorrectly used in 

predictive models.  Shmueli (2010) lists a host of journal articles that incorrectly 

employ statistical measures used in explanatory models to measure the accuracy 

of predictive models.  Certainly, goodness of fit does not guarantee goodness of 

predictions.  In forecasting new home sold below, we use PRESS, P
2
, and 

Mallows Cp statistics.  These statistics are explained below. Often, adjusted R
2
 

is incorrectly used to measure a model’s out-of-sample accuracy.   

 

2. Statistical models are employed where cause-effect relationships are 

incorrectly implied.  This may happen when an explanatory variable is included 

in the model.  Correlation does not imply causation brings to mind the age-old 

illustration that for young grade 1 children X=foot size and Y=achievement 

scores are highly correlated.  This correlated does not imply that large feet cause 
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high achievement scores.  The latent variable in this study is age.  In general, 

first grade children near seven or eight rather than barely six years old have 

larger feet and higher achievement scores.  The high correlation coefficient 

between foot size and achievement scores should direct attention to the 

underlying cause.  Knowledge of the subject matter is then needed to discover 

the true cause-effect relationship existing between age and achievement scores.   

 

 

 

3.  Conditional error occurs when an X variable is predicted and then used in 

predicting Y.  This error inflates interval predictions but is often ignored.  In the 

example below, we show a method of measuring interval predictions.  This 

method should be employed when conditional error exists.  The mistake is the 

lack of awareness that conditional error inflates interval predictions. 

 

4.  Many believe that multicollinearity is not harmful to forecasts.  Makridakis et 

al. (1998) incorrectly state, “Multicollinearity will not affect the ability of the 

model to predict.”  Multicollinear and unrelated variables cause overfitting, 

which, in turn, inflates out-of-sample interval predictions.  In the Prediction 

Variance section below, we derive a statistic that measures the width of interval 

predictions. 

 

5. Autocorrelation can occur by incorrectly omitting a relevant variable, say Z.  

If Z causes X and Y then when Z is omitted, the omission of Z often results in 

the errors being correlated. Most textbooks state misspecified models are the 

major cause of autocorrelation.  They then plunge into the differencing method 

of correction.  This should be the last resort, one should first try finding the 

omitted variable.   

 

 

 

PREDICTION VARIANCES 

 

Consider the sample regression equation  

 

 Y
^

 = Xb,                         

 (3) 

 

where X is an n x p data matrix of full rank and b is the p x 1 vector of estimated 

regression coefficients.  The HAT matrix is defined as 

 

 [hij] = H = X(X
T
X)

-1
X

T
,       

 (4) 

 

where H represents the n x n HAT matrix (Hoaglin and Welsch, 1978). Vector b in 

(3) is defined as 

 

 b = (X
T
X)

-1
X

T
Y.       

 (5) 
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     By employing (6) and (7) prediction variances are computed for E[Yi] and Yi 

sometime referred to as Y-average and Y-individual: 

 

 V
^

  (Y
^

 i) = (MSEp)hii      

 (6) 

 

 V
^

 (Yi-Y
^

 i) = MSEp(1+hii).     

 (7) 

 

The mean square error is represented as  

 

 MSEp = SSEp / (n-p),       

 (8) 

 

where SSEp is the sum-of-squares error, n is the number of observations, and p is 

the number of regression coefficients in the model.  The HAT diagonal hii is 

defined in (4).   

 

     Prediction intervals.  Interval predictions for Y-average and Y-individual are  

 

  Y
^

 i  ±  tα/2 [(MSE) hii]
1/2

,        (9) 

 

  Y
^

 i  ±  tα/2 [MSE (1+hii)]
1/2

,      

 (10) 

 

where MSE(hii) and MSE(1+hii) are defined above, and tα/2 is an appropriate value 

from the t-distribution.  Since an individual Yi value is assumed to differ from its 

respective mean E[Yi] in a random manner, Y
^

 i is the best estimate for both Y-

average E[Yi] and Y-individual. 

 

 Measuring prediction variances.  If there are n observations in the sample, 

there are n point and interval predictions.   These n interval predictions may 

differ in size (heterskedasticity); therefore, a preferred method of measurement 

is to sum all n prediction variances: 

 PV(p) = Σ

n

i=1

V 
^

(Y
^

i)  =  (MSEp)Σ

n

i=1

 hii  =  (MSEp) p,      

 (11) 

where MSEp is the mean square error from the model with p regression coefficients.  

Hocking (2003) shows 

 

   Σ

n

i=1

 hii = p.       

 (12) 
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NEW HOMES SOLD FORECAST 

 Figure 1 is the visualization of new homes sold  

(http://research.stlouisfed.org/fred2/data /HSN1FNSA.TXT).  Data ranged from 

quarter 1 of 1990 to quarter 3 of 2011.  This figure shows the actual value, fitted 

values, and out-of-sample predictions.  Projections were from quarter 4, 2011 to 

quarter 4, 2013.   

 

     Y
^
t = b0 + b1Xt + b2Ct + b3Sj + b4TtCtSj + b5Dt + b6DtXt  

 (13) 

 

Although similar, (13) differs from (2); Xt rather than the equation T = b0 + b1Xt is 

in the model.  Both Xt and Tt increase each quarter by a constant amount.  The 

variable TCSt is the combined forecast values produced from traditional 

decomposition software.  It is not from multiplying the time series components Xt, 

Ct, and Sj found in this data set.  As shown above with (1) and (2b), the event 

modeling variable Dt converts (13) into two equations.   
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Figure 1. New Homes Forecast 
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DW = 1.98 n 87

R
2

0.992 MSE 40.663

Adj R
2

0.992 P*MSE 284.64

  P
2

0.780 PRESS 91,404.30

ANOVA

df SS MS F p-value

Reg 6 412806.89 68801.15 1691.97 0.000

Error 80 3253.06 40.66

Total 86 416059.95

Coef S(b) t Stat P-value Partial F

Intercept -247.255 39.793 -6.213 0.00000 38.607

X 0.626 0.155 4.029 0.00013 16.233

S 41.163 13.248 3.107 0.00261 9.655

C 231.010 35.913 6.433 0.00000 41.377

TCS 0.764 0.056 13.762 0.00000 189.395

D 212.878 48.826 4.360 0.00004 19.009

XD -3.140 0.750 -4.190 0.00007 17.553

 

 

      Table 1 reveals that (13) is extremely accurate for in-sample fitted values 

with an R
2
 = 0.992.  However, the coefficient of prediction P

2
= 0.780 (explained 

below) is considerably lower revealing once again that goodness of fit does not 

guarantee goodness of predictions.   

 

 

 

PREDICTIVE MODELS 

The PRESS, prediction sum of squares (Hoaglin and Welsch 1978), 

and P
2
p statistics (Landram, et al., 2008b) are used to evaluate predictive 

accuracy: 

 

 P
2
p = 1 - (PRESS / SST);      

 (14) 

where 

 PRESS  =     

n

i=1
(Yi - Y

^
(i))

2
   =    

n

i=1

 e
2
(i)     

 (15) 

and SST = Σ(Yi - Y
_
)
2
.  The subscript in P

2
p indicates the number of regression 

coefficients in the model.  Since each Yi value in (15) is not used in deriving the 
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model that computes the associated prediction Y
^

(i), the independence of Yi and Y
^

(i) is 

established.  Remarkably, these residuals are computed in a direct manner: 

 

 e(i)  =  ei / (1-hii),         

 (16) 

 

where ei are ordinary residuals and hii are diagonal elements of the hat matrix H 

defined by (4) above. By dividing PRESS by SST and subtracting the ratio from 

one, P
2
p is similar to the determination coefficient R

2
p both are relative measures.  

However, P
2
p indicates quality of fit while P

2
p indicates quality of predictions.  

Again, since each Y
^

(i) in (15) is independent of Yi., PRESS residuals, PRESS, and P

2
p are considered out-of-sample statistics and use to indicate the accuracy of out-

of-sample predictions. 

 

 

DISCUSSION AND CONCLUDING REMARKS 

 As stated above, Shmueli (2010) lists a host of journal articles that 

incorrectly employ statistical measures used in explanatory models to measure 

the accuracy of predictive models.  In the example above, the new homes sold 

data possesses an extremely high R
2
 and adjusted R

2 
of 0.9922 and 0.9916, 

respectively.    However, for predictions, out-of-sample measures such as 

PRESS, P
2
 and other model selection statistics must be used along with 

judgmental modification variables.  Certainly, in an election year with a 

congress many say is dysfunctional, judgmental modification is essential.  Do 

not use goodness of fit statistics to infer prediction accuracy. 

 

  Conditional error occurs when the value of an independent X-value must 

be predicted and then used in predicting Y.  Although time series variables are 

usually better than econometric variables, they still contain a degree of conditional 

error.  Innovations such as moving seasonal indices help.  Never the less, one 

should be cognizant that conditional error results in inflated prediction variances.   

 

 

 

  Multicollinearity is harmful to forecasts.  The inclusion of unrelated and 

multicollinear variables cause overfitting and therefore inflates interval predictions.  

In nested models, use (11) to measure the size of the interval predictions.   

 

  Inflated Prediction Variances Rationale.  It is important to remember 

when an additional variable is included in the regression model, hii in (6) and (7) 

can not decrease and SSE in (8) can not increase.  With this in mind, as 

overspecification in the model increases, the MSE in (6) and (7) will not decrease 

significantly and may even increase when irrelevant variables enter the model.  

These factors cause PV(p) = (MSEp) p in (11) to increase thereby indicating 

inflated prediction variances.  

 



 
Southwestern Economic Review 

 

144 
 

  Concluding Remarks.  The objective of this study is to promote an 

understanding and awareness of mistakes frequently found in forecasting.  The 

derivation of the new homes model not only gives a practical prediction 

concerning the state of our economy but also provides a review of the latest 

innovations used in predictive modeling.  Indeed, the merits of employing 

judgmental modification, combined forecasts, and other innovations provide 

researchers with a head start in making reliable forecasts. 
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