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ABSTRACT 
     The concept of combining forecasts enables the multivariate C_logistic model to 
rival all time series and econometric models in computing accurate forecasts from 
growth data.  The “C” notation signifies a multivariate logistic equation that 
possesses a continuous response variable.  The C_logistic model is easy to 
understand, simple to apply, and derived from both spreadsheets and statistical 
software.  Therefore, this model is attractive to academicians in teaching and 
practitioners in computing superior out-of-sample forecasts.  Indeed, the structural 
form, innovative seasonal variable (Sj), combined forecasts, and judgmental 
modifications capabilities make the multivariate C_logistic model ideally suited for 
forecasting in today’s dynamic environments.  
 
 
INTRODUCTION 

The multivariate C_logistic equation possesses the needed ingredients of an 
exceptional forecasting model: an upper asymptote, a point of inflection, event modeling, 
judgmental modification, and combined forecasts capabilities.  There are four stages to 
this S-shaped growth curve: (a) slow growth, (b) growth at an increasing rate, (c) growth 
at a decreasing rate, and (d) saturation.  A plot of the data and knowledge of the subject 
matter help identify the current stage of growth.  The concept of combining forecasts 
within the multivariate C_logistic model is unique with these authors. When using 
growth data, the predictive capabilities of this model enable it to rival all time series 
(including Box-Jenkins ARIMA) and econometric models in computing accurate 
forecasts.  Since the “C” notation signifies a continuous response variable, this 
equation should not be confused with the familiar logistic equations that possess a 
binary or nominal scaled response variable.   
      This article promotes the use of combined forecasts and time series components 
within the multivariate C_logistic model.  The advantages of a single seasonal index 
variable (Sj) rather than multiple (11 for monthly) indicator variables have only recently 
been committed to writing (Landram, et al. 2004, 2008).  This seasonal variable (Sj) is 
used as an explanatory variable in describing seasonal variation in the multivariate 
C_logistic.  Since historical conditions of the past may not prevail in the future, structured 
judgmental modifications are employed thereby increasing the accuracy of future 
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predictions.   Hence, in an effort to produce superior forecasts, an innovative seasonal 
variable (Sj), combined forecasts, and structured judgmental modifications capabilities are 
used within the multivariate C_logistic model.    
 In an effort to eliminate any confusion of this model with the logit, probit, or 
single variable logistic models, the originality of the multivariate C_logistic model is 
reiterated below: 
 
(a) The C_logistic equation conforms to an S-shape growth pattern as does the logistiand 

Gompertz  equations.  However, this model possesses a continuous response variable 
with multiple explanatory variables. 

(b) Both econometric variables and time series components can be combined in the 
      C_logistic model. 
(c) In this article, the innovative least squares seasonal index variable is extended to the 

C_logistic model. 
 
Equations with the above characteristics of the C_logistic equation have not appeared in 
the literature.   
 In reviewing the past 25 years of forecasting, Gooijer and Hyndman (2006) cite 
the need for additional research into multivariate time series forecasting.  They also stress 
the need for deeper research in forecasting methods based on nonlinear models.  These 
needs are addressed in describing the C_logistic model.  Furthermore, many have 
expressed concern and disappointment over the lack of “new” methods of forecasting 
(Fildes, 2006).  They also prefer the description of an innovative forecasting method be 
grounded in real data and compared to other proven alternative methods of forecasting.  
This article addresses all of these concerns.  A major goal in forecasting is the integration 
of judgment and quantitative methods (Armstrong and Collopy, 1998).  The judgmental 
selection of the asymptote enables the C_logistic to easily integrate prior knowledge into 
a statistical model thereby achieving this goal. 
 
 
COMBINED  FORECASTS 
 The multivariate C_logistic equation is defined as 
 

         (1) 

 
where K is the upper limit or asymptote and f is a function of one or more explanatory 
variables.  Here lies the originality of this article:  (a) Y is a continuous variable, (b) f is 
not limited to a single trend variable, and (c) multiple explanatory variables are combined 
within the C_logistic model.  Indeed, explanatory variables such as time series, event 
modeling, and judgment as well as forecasts from other models are combined in this 
function.   
 
 Applications   
 Figure 1 illustrates population growth in the US using the tradition (one 
variable) logistic equation; where f in (1) is 
 
          f = b0 + b1X.                                             (2) 
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Figure 2 is a multivariable fit using  
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          Figure 1. Logistic Equation                                      Figure 2. Logistic Equation 
                           f = a + bX                                             f = a + b1X + b2X2 + b3D + b4XD 
                 US Population Growth                                           US Population Growth    
                                                                
 

 
          f = b0 + b1X + b2X2 + b3D + b4XD;          (3) 
 
where X and X2 signify population growth trends, and D signifies an event modeling 
population growth change.  The increased accuracy of the multivariate C_logistic model 
using (3) rather than (2) for f is evident when comparing Figures 1 and 2. 

     
 

     

             
       

       
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Since combining forecasts within the multivariate C_logistic is a new and 
innovative concept, it must prove its worth—especially when limited commercial 
software is available.  Although this model can be run from the nonlinear procedures of 
SAS, user friendly spreadsheet operations are provided below.  The rationale and 
spreadsheet numerics used in deriving the multivariate C_logistic model are first 
described.  Then, using data from SAS (1988), the multivariate C_logistic is shown to be 
81.5% more accurate than the nonlinear growth model employed in the SAS example.  Its 
forecasting capabilities are then compared to those computed from time series and 
econometric forecasting models. 
 
 
MODEL DERIVATION AND CONCEPTS 
 The asymptote K in (1) may be obtained subjectively or from equations found in 
articles such as Nelder (1961). The subjective value assigned to the upper limit K is 
described in greater detail below.  Given a value for K, a little algebra transforms (1) into 
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          g = ef = Y/(K-Y).                     (4) 
 
Let f be a traditional simple linear function; then 
 
          ln g = β0 + β1X = ln[Y/(K-Y)].           (5a) 
 
If  f is the multivariate function estimated by (3) then 
 
          ln g = β0 + β1X + β2X2 + β3D + β4XD  = ln[Y/(K-Y)].     (5b) 
 
By regressing ln g on X, X2, D, and XD, least squares estimates of ln g are obtained;  

          ln g
_
^
_
    = ln[Ŷ/(K-Ŷ)]  = b0 + b1X. + b2X2 +  b3D  +  b4XD.      (6) 

Note, from (6), estimates of Y are obtained by taking the antilog of  ln g
_
^
_
  and solving for Ŷ; 

           Ŷ = Kĝ/(1+ĝ).                                             (7) 

Hence, from (6) as X increases, both ln g
_
^
_
  and ĝ increase; (7) reveals as ĝ increases Ŷ  

approaches its upper limit K.  Least squares are used to estimate ln g; then, an estimate of 
Y is obtained from (7).  Estimates of Y are also obtained by substituting the numerical 

values of (3) into (1) and calculating Ŷ directly.   
 
Unrestricted Least Squares 
 Granger and Ramanathan (1984) argue that combined forecasts from several 
methods outperform forecasts from a single method.  They point out that values from 
discarded forecasting models still contain useful information about the underlying 
behavior of Y.  When biased forecasts are included in a least squares equation, the 
intercept adjusts for the bias.  Hence, in the combination process, it is important to 
include the intercept—unrestricted least squares—and let least squares automatically 
assign weights to the forecasts.  The authors also recommend the use of variable selection 
techniques concerning the inclusion of time series components and other forecasts as 
explanatory variables.   
     If the data is nonstationary or autocorrelated, there is a possibility that a 
combined forecast model with variables weighted other than by least squares will 
produce more accurate out-of-sample predictions (Aksu and Gunter, 1992).  However, 
the authors of this paper advocate the use of unrestricted least squares and contend this 
inferior performance may occur when the model is misspecified. Therefore, it is 
necessary to analyze the adequacy of out-of-sample values from econometric and time 
series variables.  It is possible that moving rather than constant seasonal indices may be 
needed, time series cyclical factors may need adjusting, and (the C_logistic’s major 
judgment advantage) the upper asymptote may need reconfirming.  The it will be possible 
to obtain a properly specified model by concentrating on the subject and let least squares 
do the weighting.  
 
Statistical Modeling 

Forecasts used as explanatory variables in a combined forecasts equation are 
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subject to the same statistical modeling scrutiny as other variables.  When two highly 
accurate forecasts are used as explanatory variables and combined, they may be 
multicollinear (redundant) with one needing deletion.  The reverse is also true when 
two inaccurate forecasts are used as explanatory variables and the combined forecast 
equation produces highly accurate forecasts. 

 
 Seasonality   
 The above statistical modeling concept also applies to time series 
components.  Multicollinearity is why the seasonal index variable (obtained from 
time series decomposition) and dummy variables used in describing seasonal 
variation should not be combined in the same model.  However, additive and 
multiplicative seasonal variables may be combined: 
 

     Ŷt = b0 + b1Xt + b2Ct + b3Sj + b4TtCtSj ;                 (8a) 
 
where Xt, Ct and Sj represent trend, cyclical and seasonal components of a time series.  
The multiplicative component TtCtSj  equals Tt*Ct*Sj ;  where Tt  = b0 + b1Xt .   A detailed 
discussion concerning the use of time series components in least squares equations is 
given by Landram et al (2004, 2008).    
  
Forecasting Software   
 From a survey of 240 US corporations, Sanders and Manrodt (2003) found 
that only 11% reported using forecasting software in which 60% indicated they 
routinely adjusted the forecasts.  Judgmental interventions are often difficult to 
perform with commercial software but relatively simple with spreadsheets.  The 
above concepts along with spreadsheet simplicity are illustrated below. 
 
 
WORKED EXAMPLES 
 In order to fix concepts and further explore the originality and benefits of 
combining forecasts within the multivariate  C_logistic model, two examples are given.  
These examples illustrate that the transformations given above are easily adaptable for 
spreadsheet pedagogy.  They also illustrate the versatility and accuracy of the multivariate 
C_logistic when compared with other forecasting methods. 
 
Example 1.  United States Population Growth 
 Using the 1790 to 1970 US population data given in SAS (1988), the curve 
from the traditional logistic equation is given in Figure 1. The population values for 
Figure 2 are calculated in a spreadsheet using the multivariate C_logistic equation 
depicted in Figure 3.  Observe that the asymptote K is in cell B2 as a driver and is 
obtained subjectively (Edmundson, 1990).  After a detailed study of the population 
growth in the US, the asymptote K is set at 450 million.  However, this upper limit 
changes with technology advancements and political attitudes.  Hence, this value can 
easily be changed to simulate forecasts with various values of K given in (1).  Letting (3) 
define function f in (1), values of Y, X, X2, D, and XD are entered.  Event modeling 
variable D signifies the baby boom era, also Hawaii and Alaska becoming states.  Values 
of g = Y/(K-Y) are calculated in column G.  After calculating ln g, the Excel regression 



 
Southwestern Economic Review 
 

 
 

248 

operations are performed.  This is accomplished by clicking on TOOLS, then DATA 
ANALYSIS, and then REGRESSION; 
           TOOLS > DATA ANALYSIS > REGRESSION. 
 

Figure 3 
Deriving The Multivariate C_Logistic 

 
    
     Figure 3. Deriving The Multiple Logistic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Observe from Figure 3 that ln g is the response variable located in cells H5-H23 and the 
explanatory variables in cells C5-F23.  Estimates of ln g in (6) are computed by entering 
the Excel equation  
 
          =$B$51+$B$52*C5+$B$53*D5+$B$54*E5+$B$55*F5   
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in cell I5.  This equation is then copied in cells I6-I32, given the values of coefficients b0, 
b1, b2, b3, and b4 are in cells B51, B52, B53, B54, and B55, respectively.  The above 

Excel equation is the Excel counterpart to (3) above.  In column K, Ŷ values are obtained 
by employing (7) above.  The mean square error (MSE = 2.051) is given in cell M1 while 
the point of inflection is revealed in column L. 
      Snedecor and Cochran (1967) comment on the striking accuracy of the 
traditional (one variable) logistic's U.S. population estimates for years 1790 to 1940 and 
failure thereafter.  They also note the unrealistic value of the computed asymptote.  This 
problem is rectified by obtaining a knowledge of the subject matter and subjectively 
selecting a more realistic value for K (see Figure 1).  This is further evidence that a 
subjectively set asymptote is often more accurate than those obtained from a numerical 
equation.  The first problem is rectified by realizing that in the 1940's the growth rate 
increased due to the baby boom.  Also, Hawaii and Alaska became states in 1959.  
Therefore, an adjustment by using the dummy variable D is employed with excellent 
results (Figure 2). The capability of using multiple variables (qualitative and quantitative) 
greatly enhances the accuracy and versatility of C_logistic forecasts.  In an era of 
turbulent conditions, qualitative variables for adjusting to events such as our post 9-
11economy have proven to be extremely useful. 
       The MSE of 2.051 for the multivariate C_logistic is compared to MSE = 11.086 
given in SAS/STAT User's Guide, 6.03 edition, page 698 using probit analysis.  Probit, 
also logit, are nonlinear growth models closely aligned to the logistic.  The SAS software 
uses numerical procedures to fit nonlinear regression models.  These procedures are 
iterative methods such as the gradient, Newton, and Marquardt methods.  As illustrated in 
Figure 3, the procedure of transforming (1) into an intrinsically linear equation decreased 
the MSE from 11.086 to 2.051 – a decrease of 81.5%.  However, other numerical 
iterative procedures (including iteratively reweighted least squares) as well as segmented 
(piecewise) models may provide an even better fit.   

Figure 4. 
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Example 2. Quarterly Sales for The Gap 
 The multivariate C_logistic also produces excellent results when using quarterly 
data given in the textbook, Business Forecasting by Wilson and Keating (2007).  
Figure 4 illustrates the accuracy of this equation when used in forecasting quarterly sales 
for The Gap -- a company operating over 1500 retail stores in the United States.  The 
linear function f in (1), in the multivariate C_logistic model, is 
 
    f = b0 + b1Xt + b2X2 t + b3Sj + b4Ct + b5Dt + b6TtSjCt;   (8b) 
 
where most of the variables in (8b) were defined in (8a).  Variables Xt and X2 t are 
sequential time variables; Sj is the least squares seasonal introduced by Landram, et al. 
(2004, 2008); Ct is a cyclical index; and Dt is an event modeling “9-11” variable.  
Variable TtSjCt is obtained from the multiplicative decomposition forecast TtSjCt = 
Tt*Sj*Ct, where Tt = b0 + b1Xt + b2X2 t.   
     Table 1 reveals that forecasting method 4—Winter’s exponential smoothing 
(Wilson and Keating 2007) forecasts combined with multiple regression forecasts—came 
in a distant second best with historical RMSE=105,832 and holdout RMSE=136,446.  
The root mean square error, RMSE = (SSE/n)1/2 ,   is used in comparing the various 
forecasting methods listed in Table 1; where SSE is the sum of squares error.  A measure 
of goodness of fit is obtained from the historical RMSE.  The historical data includes 
quarterly data from 1985 through 2003. A measure of goodness of prediction is obtained 
from the holdout RMSE. The holdout data includes quarterly data for 2004.  These four 
quarters are not used in deriving the various models and are considered out-of-sample 
data.  They are completely independent of the forecasting models.  Again,  
method 1 in Table 1 reveals that combining forecasts within the multivariable C_logistic 
enhances the accuracy of predictions.  When (8b) above is used as f in (1), the accuracy 
of both in-sample and out-of-sample predictions is enhanced with historical RMSE = 
84,348 and holdout RMSE = 88,261.  

 
TABLE 1 

COMPARING FORECASTING METHODS: 
RMSE FOR THE GAP QUARTERLY SALES 

 
    Forecasting Method            Historical RMSE              Holdout RMSE 
======================================================================== 
1. C_logistic --Time Series Components         84,348             88,261 
2. C_logistic -- Multiple Regression              195,695          552,605 
3. Multiple Regression                               262,900          729,879 
4. Combined Winter's and Multiple Regression       105,832           136,446 
5. Time-Series Decomposition                         145,517          345,359 
6. ARMA(1,0) (0,1,0)                                  339,476       1,152,442 

 Multivariate C_logistic
     

 

 January 1, 1985 to December 31, 2003 timeline for historical RMSE.   
 January 1, 2004 to December 31, 2004 timeline for holdout RMSE.   
 
f = b0 + b1X + b2X2 + b3Sj + b4Ct + b5Dt + b6TtSjCt  (8b)  used with Forecasting Method 1. 

Ŷ = b0 + b1X + b2X2 + b3D2 + b4D3 + b5D4 + b6P;    (9)  used with Forecasting Methods 2, 3, 4 
======================================================================== 
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 Wolson and Keating employ (9) as their multiple regression model in 
forecasting quarterly sales; 
 

     Ŷt =  b0 + b1Xt + b2X2 t + b3D2 + b4D3 + b5D4 + b6Pt;                (9) 
 
Pt is the Standard and Poor's 500 Returns, and D2, D3, and D4 are dummy variables 
representing quarters 2, 3, and 4, respectively.  Method 3 in Table 1 shows the 
unsatisfactory results of this model with historical RMSE=262,900 and holdout 
RMSE=729,879.  However, when (9) is used as f in the multivariate C_logistic model 
(method 2 in Table 1), the RMSE becomes smaller with historical RMSE=195,695 and 
holdout RMSE=552,605.  The poor performance of (9) in methods 2 and 3 of Table 1 is 
caused by conditional error explained below.  Nevertheless, the RMSE values become 
significantly smaller when (9) is employed as the f function in (1); method 2 compared to 
method 3. 
 
 
DISCUSSION 
 The multivariate C_logistic is extremely flexible with a myriad of shapes. In 
addition to the trend, also included are seasonal variation and cyclical variables.  
Econometric variables enable the model to forecast turning points.  As in the above 
population example, qualitative (dummy) variables enable the model to make needed 
adjustments.  Again, the D in (8b) above represents pre- and post-9-11 economies.  When 
variables other than the trend are included in the multivariate C_logistic model, the point 
of inflection is no longer at the middle of the range.  In Example 2, the inflection point for 

The Gap data occurs when the estimates Ŷ  are at approximately 2002.  The increased 
capabilities of the multivariate C_logistic enable it to become extremely effective in 
forecasting growth data. 
 
 Judgmental Modification  
 Judgmental Modification consists of injecting the forecaster's knowledge of the 
subject matter into the equation (Young, 1982).  Many feel that judgmental modification 
is an essential ingredient in forecasting (Tsay, 2000).  Bunn and Wright (1991) remind 
readers that model specification, variable selection, how far back to go in a time series, 
and special event modeling are judgmental.  A subjectively set upper limit is in agreement 
with the structured visual aids promoted by Edmundson (1990). The idea is to obtain 
judgmental modification at the level of time series components. Therefore, the asymptote 
K of the multivariate C_logistic may be subjectively set in an effort to fine tune the 
predictive accuracy of the model.  This is accomplished by finding a reasonable 
asymptotic value which produces a low holdout RMSE.  Under current conditions, upper 
limits are moving.  For example, the asymptote of K=450 for the US population growth 
in Figure 3 is controlled by such factors as immigration policies, life expectancy, birth 
control, and technological changes.  Since this upper limit is constantly moving, the 
multivariate C_logistic model is best served by using the asymptote as a judgmental 
modification tool. 
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Conditional Error   
 Kennedy (2003) discusses four types of forecasting errors: (a) random, (b) 
sampling, (c) specification, and (d) conditional errors.  Conditional error occurs when one 
must first predict an X value to use in predicting the desired Y value. Certainly, in 
Example 2, using Standard and Poor's 500 Returns (P) in (9) creates the latter error.  
Indeed, multiple regression methods (2), (3), and (4) in Table 1 must predict values for 
S&P 500 Returns before predicting quarterly sales of the future.  Thus, conditional error 
often results in poor out-of-sample predictions.  Nevertheless, using business barometers 
of this type sometimes enables the model to predict downturns.  
 
 
CONCLUSION 

Accurate forecasts are computed from econometric and time series models. 
However, it is a safe bet to say, “Show me a ‘good’ forecast and I can make it better.” 
 Note that R2 can never decrease by including an additional variable in the model.  
Therefore combine the “good” forecast with time series components and other  
forecasts thereby increasing R2.  Overfitting is the downside of combining forecasts.  
Nevertheless, when forecasting growth data, it is a safe bet to combine the “good” 
forecast and then place it in a multivariate C_logistic model.  
 Although the multivariate C_logistic outperformed other forecasting methods 
described by Wilson and Keating (2007), each business must select the forecasting 
method that best helps their particular situation.  Still, combined forecasts are generally 
superior to forecasts from a single method, and the multivariate C_logistic model rivals 
all time series and econometric models in forecasting growth data.  Since its upper 
asymptote can be determined subjectively, this model possesses a unique judgmental 
modification capability for out-of-sample predictions.  Indeed, the structural form, event 
modeling, judgment and combined forecasts capabilities make the multivariable 
C_logistic model ideally suited for forecasting in today's dynamic environments. 
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