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ABSTRACT

This paper examines the role of network externalities during the product life 
cycle of the massively multiplayer online game World of Warcraft. Augmented Dickey-
Fuller unit root tests were used to determine the stationarity of active subscriptions. 
Half-life and trend estimates suggest that information cascades played an important 
role in the network’s early growth and game expansions conferred uncompensated 
direct	benefits	during	the	later	stages	of	the	product	life	cycle.	These	results	suggest	
that	viral	marketing	is	most	effective	during	a	network	product’s	growth	phase,	while	
traditional	marketing	becomes	more	significant	over	time.		JEL Classification: D80, 
D83, D85, and D91

INTRODUCTION

Economic networks are systems of integrated interconnections sharing a common 
technical	platform	in	which	goods,	services,	and	information	flow	between	and	among	
network	members	after	first	passing	through	a	hub	or	switch.	Networks	have	become	
a ubiquitous feature of the global economy.

Many features of traditional networks, such as airlines, railroads, and shipping 
companies that move large numbers of people, products, and parcels over long distances, 
also apply to virtual networks. Virtual networks are “linked” Internet connections 
comprising computers, servers, switches, software, and related technologies. The 
telecommunications industry, for example, uses the Internet and the World Wide Web 
to	provide	voice	and	data	services.	Virtual	financial	and	commercial	networks	provide	
online access to retail shopping and auctions sites, over-the-counter equities, bonds, 
and foreign exchange markets, clearinghouse services, automated banking, and debit 
and credit cards, to name just a few. News and entertainment virtual networks integrate 
cable and television broadcasting, multimedia streaming, and electronic publishing. 
Online networks enable millions of “gamers” to interact in virtual role-playing 
environments. Social networks make it possible for individuals and groups to form 
online communities sharing similar backgrounds and interests.
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NETWORK EXTERNALITIES

Much of the network literature describes the process whereby networks expand 
and contract, interconnections form, deform, dissolve, and reform. A distinguishing 
feature	 of	markets	 for	 network	 goods	 is	 they	 generate	 positive	 feedback	 effects	 in	
which	 members	 receive	 uncompensated	 benefits	 as	 the	 network	 expands	 [see,	 for	
example, Easley and Kleinberg (2010, Chapters 16 and 17) and Economides (1996)]. 
If	 the	 increase	 in	 uncompensated	 benefits	 is	 substantial,	 network	 externalities	may	
result in an upward-sloping demand curve. Network externalities may also help 
explain rapid increases in market demand during the introduction and growth phases 
of a network’s product life cycle.

There	 are	 at	 least	 two	 complementary	 effects	 that	 generate	 uncompensated	
network	 benefits.	Direct effects	 occur	 when	 users	 receive	 uncompensated	 benefits	
by aligning their decisions, actions, and behaviors following a product innovation or 
the	introduction	of	a	complementary	technology	[see,	for	example,	Katz	and	Shapiro	
(1985), Arthur (1990), Economides (1996), Shapiro and Varian (1998), Easley and 
Kleinberg (2010, Chapter 17)]. An oft-cited example of this is the fax machine, which 
is of little or no value to a lone user, but which becomes exponentially more valuable 
as the number of integrated users with access to this technology increases. Similarly, 
online	social	networks	confer	exponentially	increasing	uncompensated	direct	benefits	
as social groups expand and subsume each other.1

Another externality contributing to a network’s growth is information effects 
in which users make sequential decisions based on the observed behavior of others, 
even	 when	 their	 privately-held	 information	 suggests	 a	 different	 course	 of	 action.	
Information	effects	may	culminate	in	an	information cascade in which user behavior 
predicated on inference and innuendo feeds on itself.2 The decision to abandon private 
information in favor of suppositions drawn from the observed behavior of others 
is frequently emotional and impulsive, which may account for spasmodic network 
expansions or contractions. Information cascades (also referred to as herd behavior) 
tend to be fragile since decisions based on incomplete or incorrect information are 
quickly reversed.3

Information	 cascades,	 such	 as	 speculative	 bubbles	 in	 financial	 markets,	 can	
be	 difficult	 to	 recognize	 as	 they	 occur,	 even	 when	 comprehensive,	 real-time,	 and	
high-frequency data is available. Even when information cascades are correctly 
identified,	describing	the	transmission	mechanism	and	the	conditions	that	instigated	
the contagion can be elusive, especially when the underlying network architecture is 
not well understood. In spite of this, several important studies have contributed to an 
understanding	of	 the	dynamics	of	 information	cascades	 	 [see,	 for	example,	Lerman	
and Ghosh (2010), Alevy et al. (2007), Banerjee and Fudenberg (2004), Rogers 
(2003), Plott (2000), Bikhchandani and Sharma (2000), Allsopp and Hey (2000), 
Anderson and Holt (1997), and Banerjee (1992)]. While studies of virtual social and 
financial	networks	have	resulted	in	a	deeper	understanding	of	information	transmission	
mechanisms, the paucity of reliable and comprehensive data of conventional consumer 
network goods has handicapped the development of a more complete understanding of 
information contagions.

This	study	attempts	to	partially	rectify	this	deficiency	by	analyzing	the	dynamic	
properties of active global subscriptions for history’s most popular massively 
multiplayer online role-playing game (MMORPG)—World of Warcraft (WoW). The 
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analysis begins with a brief review of the standard model of the market for network 
goods and its application to the product life cycle (PLC). The standard model suggests 
a theoretical framework for analyzing temporary, trend-reverting shocks associated 
with	 network	 effects.	 This	 review	 is	 followed	 by	 brief	 discussions	 of	 massively	
multiplayer online games (MMOG) and the emergence of WoW—the most successful 
massively multiplayer online role-playing game (MMORPG).

An impediment to the analysis of WoW network externalities is the absence of 
a comprehensive data set. The methodology used to resolve this data shortcoming 
is discussed in the data analysis section. This is followed by the application of 
augmented Dickey-Fuller (ADF) unit root tests to determine the stationarity of active 
subscriptions in each phase of the WoW PLC. Establishing stationarity is important 
since shocks become permanently embedded in nonstationary data resulting in never-
ending exponential growth—a phenomenon that is not normally observed in the real 
world. 

The analysis of stationary WoW active subscriptions is followed by a discussion 
of the data’s dynamic properties. Estimated half-lives of temporary shocks can be used 
as	 proxies	 for	 the	 relative	 strengths	 of	 trend-reverting	 network	 effects	 during	 each	
phase of the PLC. These trend-reverting properties have important implications for 
network	publishers’	marketing	strategies.	The	final	section	of	this	paper	summarizes	
the main conclusions of this study and discusses the implications for viral and 
traditional marketing.

STANDARD MODEL OF THE MARKET FOR NETWORK GOODS

Network	 goods	 differ	 from	 pure	 private	 goods	 in	 that	 they	 exhibit	 positive	
feedback	effects	[see	Katz	and	Shapiro	(1985),	Economides	(1996),	Shapiro	and	Varian	
(1998), and Easley and Kleinberg (2010, Chapter 17)]. According to the principle 
of diminishing marginal utility, the maximum price that buyers are prepared to pay 
for additional units of a pure private good decline with an increase in the quantity 
demanded.4 In the case of network goods, however, an increase in network size bestows 
uncompensated	benefits	on	incumbent	members.	The	result	can	be	an	upward-sloping	
demand curve at low membership levels, such as during the introduction and growth 
phases of the PLC. The demand curve for network goods begins to assume its familiar 
downward-sloping shape as the network good matures.

The reservation price of consumer x in the standard model may be described 
by a compound inverse demand function of the form f[E(xt)]r(xt), where xt is the 
contemporaneous share of the population expected to join the network in period t, 
r(xt) is the compensated reservation price, and f[E(xt)] the consumers’ uncompensated 
expected	benefits.5 The model assumes that single-unit users with perfect expectations 
are indexed in ascending order according to their reservation prices in the half-open 
interval (0, 1].

To illustrate the structure of the standard model, suppose that reservation prices 
are linear and contemporaneous according to the equation r(xt) = 1 – xt, which has 
a parabolic shape. At a constant marginal cost, this model has two equilibria in the 
price interval [0, ¼)	 [see	Figure	17.3	 in	Easley	and	Kleinberg	(2010,	p.	455)].	For	
values of p > ¼, x = 0. A price increase in the interval [0, ¼) results in an increase in 
the	quantity	demanded	following	a	marginal	increase	in	uncompensated	benefits	that	
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exceeds	the	marginal	decrease	in	compensated	benefits.	The	result	is	a	reversal	of	the	
law of demand.

The	sources	of	these	uncompensated	benefits	have	been	identified	in	the	literature	
as	the	direct	and	information	network	effects	discussed	earlier.	Network	effects	play	
an	important	role	in	defining	the	structure	of	this	market.	At	low	membership	levels,	
the demand curve intersects marginal cost from below. Thus, equilibria for market 
shares xt < ½, such would be found during the introduction and decline phases of the 
PLC, are unstable “tipping points,” Temporary shocks in this region can be expected 
to accelerate network growth during an information cascade or hasten its demise. By 
contrast, stable market equilibria for market shares xt > ½ when the demand curve 
is downward sloping are consistent with the maturity and decline phases of the PLC.

While shocks may occur during any phase of the PLC, incumbents and prospective 
users are less prone to make impulsive decisions once a network reaches maturity 
since	 by	 then	 the	 benefits	 of	 membership	 are	 well	 understood.	 For	 this	 reason,	
information cascades resulting from herding behavior are most likely to occur during 
the introduction and growth phases, which is consistent with the prediction of the 
standard model that tipping points exist at low levels of network membership. On the 
other	hand,	network	shocks	affecting	network	growth	are	more	likely	to	be	associated	
with	the	direct	effects	of	product	innovation	or	new	technology	during	the	maturity	
and decline phases.

MASSIVELY MULTIPLAYER ONLINE GAMES

The standard model of network goods assumes that single-unit users are indexed 
in ascending order according to their reservation prices in the half-open interval (0, 1]. 
The market for massively multiplayer online games (MMOGs) is a virtual network that 
satisfies	this	requirement.	An	MMOG	is	comprised	of	users	(gamers),	a	World	Wide	
Web protocol that formats and transmits gamer instructions (such as HTTP—hypertext 
transfer protocol), application servers that integrate gamers and servers, database servers 
that manage data storage and retrieval, and Internet service providers (ISPs). MMOGs 
simultaneously host millions of gamers in thousands of clusters in a continually updated 
interactive environment that accommodates a variety of Internet-capable platforms, 
such as personal computers, tablets, video game consoles, and smartphones. Access 
to online gameplay requires that individual users have dedicated active subscriptions. 
	 Online	 games	 are	 major	 contributors	 to	 Internet	 traffic.	 Prior	 to	 the	 late-
1990s, the development of graphic MMOGs was limited by capacity restrictions 
of dial-up modems. Beginning in the late-1990s, however, MMOGs experienced 
explosive growth due to the development of broadband Internet technology, 
which allowed for more complex graphics and audio features that enhanced the 
interactive gaming experience.6 By 2015, the number of active global MMOG 
subscribers had grown to more than 1.5 billion gamers worldwide. This surge 
in MMOG’s popularity was accompanied by an increasingly competitive online 
gaming industry in terms of the number of publishers, game genres, and titles. 
	 There	 are	 several	MMOG	genres	 including	first-person	 shooter	 (FPS)	games,	
massively multiplayer online role-playing games (MMORPGs), racing games, sports 
games,	 social	 games,	 fighting	 games,	 and	 puzzle	 games.	MMOG	 genres	 differ	 in	
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terms of storylines, virtual environment, server updates, and speed of gameplay. 
MMORPGs and FPS games are the most popular MMOG genres in terms of active user 
subscriptions. FPS games are weapons-based combat scenarios experienced through 
the eyes of an avatar. FPS games are characterized by short sessions of rapid, drop in-
and-out play.7 By contrast, MMORPGs involve a large number of players interacting 
in	virtual	real-world,	fantasy,	science	fiction,	superhero,	horror,	and	historical	settings.	
Players create and develop a broad range of characters who complete a series of ever 
more challenging stages or “quests.” MMORPGs are slower-paced than FPS games 
and involve more prolonged gameplay. Some MMORPGs even allow for an exchange 
of virtual currency.8 

WORLD OF WARCRAFT

Prior to the release of World of Warcraft, the most popular MMORPG was Lineage, 
which was published in 1998 by South Korean video game developer NCsoft. By 
2004, active Lineage global subscriptions exceeded 3 million gamers. In that same 
year, Blizzard Entertainment, Inc. (Blizzard) of Irvine, California released WoW.9 In 
the next nine months, active WoW global subscriptions surpassed Lineage’s high-
water mark. By mid-2008, Lineage active subscriptions had fallen below 1 million 
gamers, while active WoW subscriptions eclipsed 11 million (see Figure 1). Two years 
later, NCsoft had shut down Lineage, while WoW active subscriptions peaked at 12 
million users.

The decline of the WoW franchise in the months that followed can be explained 
by a variety of reinforcing factors, including gamer ennui, evolving gamer tastes and 
preferences, and increased competition from rival online game publishers. After more 
than half a decade of MMOG market dominance, WoW had begun to show its age. 
Using the terminology of evolutionary biology, WoW became the victim of intragenus 
competition in which the dominant species became vulnerable to natural displacement 
by more successful subspecies.

DATA ANALYSIS

Identifying network externalities requires comprehensive, real-time, high-
frequency temporal data in which stochastic disturbances are minimized. Much of 
our understanding of information transmission mechanisms and network architecture 
comes	from	empirical	research	of	social	networks	and	financial	market	transactions	
[see,	for	example,	Lerman	and	Ghosh	(2010),	Hogg	and	Lerman	(2009),	Leskovec	and	
Horvitz (2008), Alvey et al. (2007), Leskovec et al. (2007), Liben-Nowell and Kleinberg 
(2007), Leskovec et al. (2006), Vazquez et al. (2006), Gruhl and Liben-Nowell (2004), 
Wu et al. (2004), and Bikhchandani and Sunil (2000)]. The dearth of reliable and 
consistent high-frequency time-series data, however, has handicapped the development 
of a deeper understanding of the dynamics of such network goods as online games. 
 MMOG publishers tend to release comprehensive and consistent subscription 
data only when sales are robust, perhaps as a marketing ploy to stimulate product 
demand and burnish their corporate image. Blizzard, for example, routinely 



6

released detailed monthly data as active WoW subscriptions skyrocketed during 
the	 first	 15	 months	 following	 its	 debut	 in	 October	 2004.	 As	 the	 sales	 growth	
slowed in early-2006, however, the release of subscription data became more 
erratic as Blizzard began reporting sales data in its quarterly earnings reports. 
 By the third quarter of 2015, active WoW subscriptions had fallen to around 5.5 
million subscribers.10 In September 2010, Blizzard announced that it would no longer 
release WoW subscription data, despite the fact that the total number of active subscriptions 
was still impressive by industry standards. The decision to suspend reporting sales data 
was widely interpreted as de facto recognition that WoW was nearing the end of its PLC. 
 In the 131 months following its debut, Blizzard released data on active WoW 
subscriptions on average every 1.6 months. To analyze the dynamic properties of active 
WoW global subscriptions a more comprehensive data set was needed. The preferred 
empirical method for approximating missing observations is to regress the available 
data against a highly-correlated proxy. Unfortunately, the search for a suitable proxy 
was unsuccessful. The less satisfying approach used in this study involved a two-step 
process.	The	first	 step	 involved	 linearly	 interpolating	missing	monthly	 subscription	
data. The resulting data set was then exponentially smoothed and the resulting 
estimates substituted for the missing data.11 The data on active subscriptions used in 
this study are summarized in Figure 1.

AUGMENTED DICKEY-FULLER UNIT ROOT TEST

What is the evidence that the growth of WoW was at least partly attributable 
to the presence of network externalities? To answer this question it is necessary to 
determine whether active WoW subscriptions reverted to a long-run trend following 
temporary shocks, or did the data follow a random walk? If the data followed a random 
walk then we can conclude that network externalities played no role. On the other 
hand,	 a	 stationary	 time	 series	 suggests	 that	 direct	 and	 information	 network	 effects	
were	not	only	present	but	had	a	persistent	effect	on	future	sales.	This	is	an	important	
consideration since it tells us something about the potency of word-of-mouth sales and 
the	effectiveness	of	more	traditional	promotional	efforts.

The test for stationary involves applying ordinary least squares (OLS) to 
estimate the parameters of an autoregressive time series given by the process 

                        st = α + βt + 𝜌st − 1 + ut                                                                                                                                 (1)

where st represents active subscriptions at time t. If β > 0 and 𝜌 < 1 then st is stationary 
after detrending. On the other hand, if α ≠ 0, β = 0 and 𝜌 = 1 then st follows a 
random	walk	with	“drift.”	This	unmodified	approach	is	problematic,	however,	since	
the	Gauss-Markov	conditions	are	violated.	Standard	tests	of	significance	may	not	be	
valid	because	random	walks	do	not	have	a	finite	variance.	David	Dickey	and	Wayne	
Fuller	developed	a	 test	for	determining	the	statistical	significance	of	unit	roots	[see	
Fuller (1976) and Dickey and Fuller (1979, 1981)].

It is standard procedure when testing for random walks to include ∆st in Equation 
(1) since st (even when detrended) can yield spurious results. Moreover, it is not 
possible to test whether the estimated value of 𝜌	 is	statistically	different	from	unity	
using a standard t-test. The reason for this is that when ρ = 1, OLS estimates are biased 
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towards zero, which could lead to incorrectly rejecting the random walk hypothesis. 
Dickey and Fuller (1981) overcame this problem by deriving a distribution to test the 
hypothesis that β = 0 and 𝜌 = 1. Sample critical F-values (F*) are presented in Table 1. 

An augmented Dickey-Fuller (ADF) unit root test proceeds as follows. First, as-
sume an autoregressive process of the form

  st = α + βt + 𝜌st − 1 + γ∆st − 1 + ut       (2)

where ∆st − 1 = st − 1 − st − 2. Subtracting st − 1 from both sides of Equation (2) yields the 
unrestricted equation

  ∆st = α + βt + (𝜌 – 1)st − 1 + γ∆st – 1.      (3)

After estimating Equation (3) with OLS, estimate the restricted equation

  ∆st = α + γ∆st – 1.          (4)

To test the null hypothesis that β = 0 and 𝜌 = 1, a Wald F-statistic is calculated 
using the error sum of squares (ESS) and degrees of freedom of the estimated 
unrestricted and restricted equations.12, 13 Table 2 summarizes the OLS estimates of the 
unrestricted (U) and restricted (R) equations for the entire sample period and for each 
phase of the PLC.14 Columns (2) to (5) summarize the parameter estimates for each 
regression. The numbers in parentheses are standard errors. Columns (6) and (7) report 
the corresponding ESS and degrees of freedom used to calculate the Wald F-statistics 
in Column (8).

Since FW > F*	 at	 the	 1	 and	 5	 percent	 confidence	 levels,	 the	 random-walk	
hypothesis is rejected for the entire sample period and for each phase of the PLC. 
Since active subscriptions may be characterized as a stationary time series, knowing 
how long it takes for a temporary shock to revert to its long-run trend has important 
marketing implications because it tells us something about the persistence of direct 
and	information	external	effects	on	network	growth.

 
 
DYNAMIC PROCESSES

 
 The analysis presented in the preceding section suggests contributed to the growth 
of the WoW network. This section examines the dynamic properties of this time series 
and	attempts	to	identify	information	and	direct	network	effects.	To	distinguish	these	
network	effects,	the	restricted	equation	used	in	the	ADF	unit	root	tests	was	modified	
to	explicitly	account	for	the	presence	of	direct	effects.	What	remains	should	include	
information	effects,	if	any.

Recall that direct effects occur when network users receive uncompensated 
benefits by aligning their decisions, actions, and behaviors in response to 
product innovations or complementary technologies. A game expansion is 
an example of such an innovation.15 During the period covered by this study, 
Blizzard released five expansions. The first of these gaming upgrades was 
The Burning Crusade, which was released in North America, Europe, Singapore, 
Thailand, and Malaysia on January 16, 2007 (indicated by ① in Figure 1).16 This 
was followed by its release in Australasia a day later; South Korea on February 
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1; Taiwan, Hong Kong, and Macau on April 30; and the Peoples Republic of 
China on September 30. This expansion was part of a marketing strategy to boost 
subscription sales. While the upsurge was substantial, sales growth continued 
to decelerate as WoW entered into the maturity phase of its PLC (See Figure 1). 
 Blizzard released two more expansions during the 3-4 years of the maturity phase. 
Wrath of the Lich King was released on November 13, 2008, followed by Cataclysm 
on December 7, 2010 (see ② and ③ in Figure 1).17 While these expansions energized 
gamer	 interest,	 the	 effect	 on	 sales	 was	 less	 than	 for	 the	 first	 expansion.	 Blizzard	
responded to the downturn in new subscriptions with Mists of Pandaria, which was 
released on September 25, 2012 (see ④ in Figure 1).18 By this time, WoW was well 
into the decline phase of the PLC. Although the fourth expansion increased sales 
by roughly 3 million subscriptions, the games downward sales trajectory resumed a 
month later.

Warlords of Draenor was released on November 13, 2014 (see ⑤ in Figure 2), 
more than two years following the release of Mists of Pandaria. Sales	of	 this	fifth	
expansion were a disappointing 2.7	million	in	the	first	week	following	its	release. While 
impressive in its own right, this increase was the lowest of any previous expansion. To 
make matters worse, there was no apparent resurgence in gamer interest. By the start 
of the second quarter of 2015, active subscriptions had fallen to 7.1 million—300,000 
fewer subscribers than before the release of Warlords of Draenor. On August 8, 2015, 
Blizzard announced that its global subscriber base had fallen to 5.6 million users—
the lowest level since 2005. WoW was approaching its denouement.19 By mid-2019, 
independent estimates put active WoW global subscriptions at around 4.5 million users. 
	 To	capture	the	direct	effects	of	these	expansions,	Equation	(3)	was	modified	as
 ∆st = α + βt + (𝜌 – 1)st − 1 + γ∆st – 1 + 𝛿d     (5)

where dt = 1	for	the	first	and	second	month	following	the	release	of	an	expansion,	and	dt = 
0 otherwise. This dummy variable was set equal to unity for two sequential months to ac-
count	for	the	benefits	of	an	expansion	to	disseminate	within	the	gaming	community.	Final	
parameter estimates and associated statistics for Equation (5) are summarized in Table 3. 
 Columns (2) and (3) of Table 3 summarize the estimated constants and time 
index parameters, respectively. The time index indicates whether active subscriptions 
exhibited a long-run trend. The parameter estimates in Column (4) are used to test for 
a random walk. The numbers in parenthesis are t-statistics to test the null hypothesis ρ 
= 1 (i.e., a unit root) against the alternative hypothesis ρ < 1. (ρ –  1) not statistically 
different	from	zero	implies	that	ρ = 1, i.e., a random walk. No random walk requires 
rejection of the null hypothesis that (𝜌 – 1) = 0 in favor of its alternative (𝜌 – 1) < 0. 
 Standard t-tests	to	determine	statistical	significance	is	inappropriate	when	st is 
nonstationary. Since the central limit theorem does not apply, (𝜌 – 1) does not have the 
usual t-distribution. Once again, David Dickey and Wayne Fuller (1979, 1981) came 
to the rescue by calculating the asymptotic distribution of OLS estimates of (𝜌 – 1) 
under the unit-root hypothesis. These critical values (DFc) are reported in the square 
brackets below each t-statistic. If t > DFc (i.e., that ρ = 1) then it is not possible to 
reject the null hypothesis of a unit root, in which case we must conclude that active 
subscriptions	follow	a	random	walk,	that	is,	there	are	no	network	effects.	If (ρ –  1) <  1 
then t will be negative. DFc < 0 will lead to a rejection of the null hypothesis of a unit 
root.
 Column (5) of Table 3 summarizes the estimated parameters of ∆st – 1. A statis-
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tically	 significant	 explanatory	variable	 indicates	 that	 active	 subscriptions	 constitute	
a second-order autoregressive process. The addition of this variable was necessary 
to	correct	for	serial	correlation,	which	can	inflate	the	estimated	t-statistics and make 
t-tests unreliable. Column (6) tells us whether the release of new expansions had 
a	 statistically	 significant	 effect	 on	 new	 subscriptions.	Columns	 (7)	 and	 (8)	 include	
test	 statistics	 for	 first-order	 serial	 correlation.	Column	 (7)	 summarizes	 the	 familiar	
Durbin-Watson (DW) statistic. Column (8) reports Lagrange multiplier statistics 
where LM =  (n –  1)R2 follows a chi-square distribution. The numbers in parentheses 
are	the	associated	critical	values	at	the	5	percent	confidence	level	[LMc = χ2(0.05)]. 
We	should	reject	the	null	hypothesis	of	first-order	serial	correlation	when	LM < LMc. 
 Finally, Column (9) summarizes the estimated half-lives of temporary 
shocks,	which	were	derived	 from	 the	 solutions	 to	 the	corresponding	first-	 and	 sec-
ond-order	 difference	 equations.	 Half-lives	 indicate	 how	 long	 in	 months	 it	 will	
take for a temporary shock to decay by half. Estimated half-lives indicate the per-
sistence of shocks to the network. For example, suppose that the release of a 
new expansion that initially boosts sales by 100 subscriptions has a half-life of 
two years. The number of sales accounted for by the expansion after two years is 
50 thousand subscriptions; 25 thousand subscriptions two years after that, so 
on. An increase in a half-life translates into a greater overall impact on sales. 
 Recall that if β > 0 and ρ < 1, st will be stationary after detrending. The pa-
rameter	 estimates	 and	 statistics	 summarized	 in	Table	 3	 support	 the	 findings	 of	 the	
ADF unit root tests in Table 2 that active subscriptions were stationary overall and 
for each phase of the PLC. That is, we reject the random walk hypothesis since t 
> DFc. The results presented in Table 3 indicate that new expansions had a statisti-
cally	significant	effect	on	sales	during	 the	maturity	and	decline	phases	of	 the	PLC.	
While new expansions boosted sales an average of 194 thousand active subscriptions 
overall, estimated half-lives steadily declined. New expansions during the maturity 
phase, which boosted sales by about 272 thousand active subscriptions, had a half-
life of around 9 months. New expansions during the decline phase increased sales 
by about 1.5 million subscribers, although half-lives fell to less than two months. 
	 Significantly,	 although	 the	 release	 of	 The Burning Crusade during the 
growth	 phase	 was	 statistically	 insignificant,	 temporary	 shocks	 had	 a	 half-life	
of almost 2 years. Moreover, there is no evidence of a positive trend during the 
growth phase, even though the WoW subscriber base expanded rapidly dur-
ing this period. What accounted for the network’s rapid growth? One possi-
ble explanation was word-of-mouth sales that led to an information contagion. 
 The above analysis supports the idea that active subscriptions were stationary; that 
network	effects	were	trend-reverting,	and	that	temporary	shocks	as	measured	by	half-lives	
diminished	over	time.	These	results	are	amplified	by	examining	the	dynamic	properties	
of	the	estimated	equations	in	Table	3.	The	solutions	to	the	corresponding	first-	and	second-
order	linear	difference	equations	are	summarized	in	Table	4	and	depicted	in	Figures	2	to	5. 
	 Figure	2,	for	example,	depicts	the	solution	to	the	second-order	difference	equa-
tion for the entire PLC in Table 4. This solution assumes initial conditions of zero 
sales in period 0 [s(0) =  0], sales in period t = 1 of 100 thousand subscriptions [s(1) 
= 100], and no expansions (d =  0). The dashed line illustrates the time trend during 
this period, while the solid line represents the time path of active subscriptions follow-
ing a temporary shock for a period of 100 months (8.3 years). The reader can verify 
by inspection that the half-life of temporary disturbances during the entire PLC was 
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20.4 months. That is, it took about 1.7 years for a temporary shock to decay by half; 
another 1.7 years to decay by half again, and so on. Overall, it took about 7 years 
for a temporary shock to converge to within around 5 percent of the long-run trend. 
 
 
SUMMARY AND CONCLUSIONS

 This paper examined network externalities and their possible relation-
ship to the product life cycle of history’s most popular massively multiplay-
er online game—World of Warcraft. This study began with a discussion of 
two complementary network externalities. Network users receive direct ben-
efits	 when	 they	 aligning	 their	 behavior	 following	 the	 introduction	 of	 innova-
tive	 or	 complementary	 technologies.	 Information	 effects	 occur	 when	 network	 us-
ers make sequential decisions based on the observed behavior of incumbents. 
 This study found using augmented Dickey-Fuller unit roots tests that active 
global subscriptions during all phases of the product life cycle were stationary, i.e., 
that	temporary	shocks	were	trend	reverting.	The	study	also	found	that	direct	benefits	
to	users	from	new	game	expansions	were	statistically	insignificant	during	the	intro-
duction and growth phases of the product life cycle, but were important in boost-
ing sales during the maturity and decline phases. This suggests that rapid early net-
work growth may have been the result of word-of-mouth sales resulting in an in-
formation cascade. Finally, the persistence of temporary shocks that increased sales 
as	measured	 by	 their	 half-lives	was	 significant	 (almost	 9	 years)	 during	 the	 growth	
phase,	 but	which	 steadily	diminished	over	 time.	This	 suggests	 that	 efforts	 to	boost	
sales by releasing new expansions met with declining success as World of War-
craft neared the end of its product life cycle, perhaps because of gamer ennui. 
	 The	 practical	 significance	 of	 these	 results	 from	 a	 business	 perspective	 is	 the	
potential	 importance	 of	 viral	marketing.	 Steve	 Jurvetson	 (2000)	 defines	 viral	mar-
keting as “network-enhanced word of mouth.” According to Professor Jurvetson, 
“every consumer becomes an involuntary salesperson simply by using the product” 
(p.	110).	This	is	a	restatement	of	a	network’s	information	effect	whereby	current	and	
prospective users make sequential decisions based on the observed behavior of others, 
even	when	privately-held	information	suggests	following	a	different	course	of	action. 
	 Information	cascades	from	viral	marketing	can	be	more	effective	than	traditional	
advertising if it involves the implicit endorsement of trusted incumbent users. Ide-
ally, word-of-mouth marketing will metastasize into an information cascade, such as 
occurred with the launch of email service provider Hotmail in 1996. Hotmail, which 
was acquired by Microsoft in 1997 for an estimated $400 million, included a clickable 
URL (web address) with each email to encourage recipients to adopt the service. The 
resulting network explosion resembled a viral contagion as Hotmail’s subscriber base 
grew from zero to 12 million users in 18 months—all on an advertising budget of just 
$50,000. Rather than waiting until its email service had seasoned, the early launch 
was an important contributing factor in the success of Hotmail’s marketing strategy. 
Hotmail’s success was not dissimilar to the experience of World of Warcraft during its 
introduction and growth phases.
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ENDNOTES

1. Individuals may join social network websites or purchase fax machines because 
personal or business acquaintances have done so, or because the network provides 
access	to	a	wider	circle	of	potential	contacts	resulting	in	an	increase	in	beneficial	
interactions. Lin and Lu (2011) argued that enjoyment is the most important factor 
in the decisions to join social networks, followed by the number of peers in the 
network, and the network’s overall usefulness.

2. Information cascades are attributable to the work of Banerjee (1992), Welch 
(1992), Bikhchandani et al. (1992, 1998), and Milgram et al. (1969).

3. While these terms are frequently used interchangeably, Smith and Sørensen 
(2000) argued that information cascades occur when users ignore privately-held 
information when making sequential decisions, whereas this is not necessarily 
the	case	with	herd	behavior.	The	present	study	makes	no	effort	to	fine-tune	these	
definitions.

4. Pure private goods are excludable in that payers can deny nonpayers from enjoy-
ing	their	benefits.	In	other	words,	private	goods	are	rivalrous	in	that	consumption	
by one user rules out the simultaneous consumption by others. Pure private goods 
do	not	produce	third-party	effects	(externalities).	Consumers	and	producers	enjoy	
all	of	the	benefits,	but	also	incur	all	of	the	costs.

5. This compound function is a continuous and strictly monotonically increasing 
function of xt. The inverse market demand equation r(xt) is assumed to be strictly 
decreasing	and	twice	differentiable.

6. See Che and Ip (2012) and Chen et al. (2006) for an analysis of the impact of 
online	gaming	on	Internet	traffic.	According	to	Che	and	Ip	(2012),	the	growth	of	
online	gaming	 traffic	volume	poses	serious	challenges	 to	servers	and	 ISPs	 that	
rely	on	the	efficient	flow	of	Internet	traffic.

7. Non-MMORPG genres, such as FPS Counter Strike (released in 1999), are rela-
tively parsimonious in terms of their data and system requirements. User instruc-
tions comprise a few simple commands, such as “walk,” “chat,” “rest,” and “at-
tack.” By contrast, narratively elaborate MMORPGs place much greater demands 
on the Internet infrastructure. According to Chen et al. (2006), the number of 
active MMORPG subscriptions exceeded 500 million in 2005, with the six most 
popular	titles	accounting	for	3-4	percent	of	total	Internet	traffic.

8. Virtual currency issued by software developers circulates as a medium of ex-
change among the members of online gaming communities. Gamers use virtual 
money to purchase “add-ons,” such as maps, extended storylines, antagonists, 
weapons to enhance the gaming experience. “Gold farmers” sell accumulated vir-
tual currency for cash on websites that are separate from the game itself. 

9. Blizzard Entertainment is a subsidiary of Activision Blizzard. Founded in 1991 
as Silicon and Synapse, the company changed its name to Chaos Studios in 1994. 
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In 2008, Activision Publishing merged with Vivendi Games. In 2013, Activision 
Blizzard was born following a takeover of its then majority shareholder Vivendi.

10. According to Guinness World Records, World of Warcraft is the most popular 
MMORPG in history. In January 2014, Blizzard announced that more than 100 
million user accounts had been created over the game’s lifetime.

11. The exponential smoothing formula used in this study was st = αxt + (1 – α)st – 1, 
where st is the smoothed observation, xt is the current observation, and 0 < α < 1 is 
a smoothing factor. The values of the smoothing factor that are close to unity have 
a	lesser	smoothing	effect	and	give	greater	weight	to	recent	observations.	Values	of	
α	closer	to	zero	have	a	greater	smoothing	effect	and	are	less	responsive	to	recent	
changes. Trial-and-error selection of the smoothing factor reflects	 the	 author’s	
judgment, which in this study was α = 0.3.

12. The test will remain the same when additional ∆st lags are added to the right side 
of Equation (2).

13. The Wald F-statistic was calculated as Fw = [(ESSR – ESSU)/(dfR – dfU)]/(ESSU/
dfU).

14. Phases	of	the	PLC	were	subjectively	identified	and	include	one-month	overlaps.

15. An online game expansion supplements an existing MMOG. Expansions extend 
existing storylines, introduce new quests, stages, avatars, virtual environments, 
combat scenarios, weapons, appliances, utilities, and so on.

16. Although the launch of The Burning Crusade was plagued by server crashes, sales 
of	nearly	2.4	million	in	 the	first	24	hours	made	WoW	the	fastest-selling	online	
computer game up to that time.

17. On	its	first	day	of	release,	Wrath of Lich King sales were more than 2.8 million. 
On	its	first	day,	Cataclysm sales were more than 3.3 million. Both releases solidi-
fied	WoW’s	reputation	as	the	most	successful	online	computer	game	ever.

18. Sales of Mists of Pandaria were a disappointing 2.7	million	in	the	first	week	fol-
lowing its release.

19. Blizzard released a sixth WoW expansion (Legion) on August 30 2016, and on 
November 3, 2017, released a seventh WoW expansion (Battle of Azeroth). Both 
of these releases fall outside the period examined in this study. An eighth expan-
sion, Shadowlands, was announced by Blizzard, on November 1, 2019
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FIGURE 1
WORLD OF WARCRAFT PRODUCT LIFE CYCLE

Notes: Actual (•)	and	fitted	(+)	subscription	data.

TABLE 1
CRITICAL DICKEY-FULLER F* DISTRIBUTION

Probability of a smaller value
N 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
25 0.74 0.90 1.08 1.33 5.94 7.24 8.65 10.61
50 0.76 0.93 1.11 1.37 5.61 6.73 7.81 9.31
100 0.76 0.94 1.12 1.38 5.47 6.49 7.44 8.73
250 0.76 0.94 1.13 1.39 5.39 6.34 7.25 8.43
500 0.76 0.94 1.13 1.39 5.36 6.30 7.20 8.34
∞ 0.77 0.94 1.13 1.39 5.34 6.25 7.6 8.27
se 0.004 0.004 0.003 0.004 0.015 0.020 0.032 0.058

Source: Dickey & Fuller (1981), Table VI, p. 1063.
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TABLE 2
DICKEY-FULLER TESTS WORLD OF WARCRAFT PRODUCT LIFE 

CYCLE

(1)
Phase

(2)
α

(3)
β

(4)
(ρ − 1)

(5)
γ

(6)
ESS

(7)
df

(8)
Fw

PLC (U)

PLC (R)

404.33
(105.09)

22.04
(29.01)

−2.65
(0.85)

−0.02
(0.01)

0.26
(0.09)
0.42

(0.08)

1.16E+07

1.34E+07

123

126

61.97

Growth (U)

Growth (R)

503.93
(116.03)
226.31
(57.69)

17.07
(14.36)

−0.10
(0.06)

0.03
(0.17)
0.13

(0.17)

1.69E+06

2.07E+06

34

36

38.50

Maturity (U)

Maturity (R)

1334.26
(491.23)
−6.88

(28.69)

−5.35
(1.83)

−0.09
(0.04)

0.22
(0.13)
0.29

(0.13)

2.35E+06

2.77E+06

55

57

49.19

Decline (U)

Decline (R)

3248.54
(1730.62)
−92.02
(88.75)

−14.30
(10.56)

−0.22
(0.09)

0.44
(0.17)
0.32

(0.17)

6.29E+06

7.52E+06

29

31

28.37

Note: Numbers in parentheses are standard errors.
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TABLE 3
EQ. (5) FINAL PARAMETER ESTIMATES.*

(1)
Phase

(2)
α

(3)
β

(4)
(ρ − 1)*

(5)
γ

(6)
δ

(7)
DW

(8)
LM**

(9)
Half-life

PLC 408.83
(4.14)

−2.65
(−3.20)

−0.03
(−2.48)
[−3.45]†

0.217
(2.53)

193.96
(2.26)

1.96 0.45
(165.85)

20.4

Growth 447.38
(5.45)

−0.03
(−2.53)†
[−2.94]

1.98 0.09
(59.91)

22.0

Maturity 1247.80
(2.69)

−6.27
(−3.75)

−0.08
(−2.13)†
[−3.49]

272.28
(3.23)

1.64 1.55
(84.75)

8.7

Decline 5853.05
(3.51)

−30.43
(−3.02)

−0.33
(−3.88)‡
[−4.26]

1504.89
(4.40)

1.70 0.97
(52.21)

1.7

* Numbers in parentheses are t-statistics. Numbers in square 
brackets are right critical Dickey-Fuller values. 
** The critical Lagrange multiplier values for the test of serial 
correlation are in the parentheses. Accept the hypothesis of no serial 
correlation when. 
† It is not possible to reject the null hypothesis of a unit root (ρ = 1) 
at the right 0.05 critical value.  
‡ It is not possible to reject the null hypothesis of a unit root (ρ = 1) 
at the right 0.01 critical value



18

TABLE 4
ACTIVE SUBSCRIPTION DIFFERENCE EQUATIONS

Phase Solutions Figure
PLC st  = −16,286.28(0.97)t + 561.97(0.23)t + 15,724.31 – 101.92t 2
Growth st  = 500(0.97)t + 14,431.61 3
Maturity st  = −15,705.16(0.92)t + 16,205.16 – 81.36t 4
Decline st  = −17,024.11(0.67)t + 1,752.11 – 91.11t 5

FIGURE 2
SOLVED PLC SECOND-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 0; s(1) = 100, t(0) = 0, t(1) = 1, and d 
= 0.
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FIGURE 3
SOLVED GROWTH PHASE FIRST-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 500 and t(0) = 0.

FIGURE 4
SOLVED MATURITY PHASE FIRST-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 500 and t(0) = 0.
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FIGURE 5
SOLVED DECLINE PHASE FIRST-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 500, t(0) = 0 and d = 0.
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