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STATIONARITY, UNIT ROOTS, AND 
NETWORK EXTERNALITIES: AN 
MMORPG CASE STUDY
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ABSTRACT

This paper examines the role of network externalities during the product life 
cycle of the massively multiplayer online game World of Warcraft. Augmented Dickey-
Fuller unit root tests were used to determine the stationarity of active subscriptions. 
Half-life and trend estimates suggest that information cascades played an important 
role in the network’s early growth and game expansions conferred uncompensated 
direct benefits during the later stages of the product life cycle. These results suggest 
that viral marketing is most effective during a network product’s growth phase, while 
traditional marketing becomes more significant over time.  JEL Classification: D80, 
D83, D85, and D91

INTRODUCTION

Economic networks are systems of integrated interconnections sharing a common 
technical platform in which goods, services, and information flow between and among 
network members after first passing through a hub or switch. Networks have become 
a ubiquitous feature of the global economy.

Many features of traditional networks, such as airlines, railroads, and shipping 
companies that move large numbers of people, products, and parcels over long distances, 
also apply to virtual networks. Virtual networks are “linked” Internet connections 
comprising computers, servers, switches, software, and related technologies. The 
telecommunications industry, for example, uses the Internet and the World Wide Web 
to provide voice and data services. Virtual financial and commercial networks provide 
online access to retail shopping and auctions sites, over-the-counter equities, bonds, 
and foreign exchange markets, clearinghouse services, automated banking, and debit 
and credit cards, to name just a few. News and entertainment virtual networks integrate 
cable and television broadcasting, multimedia streaming, and electronic publishing. 
Online networks enable millions of “gamers” to interact in virtual role-playing 
environments. Social networks make it possible for individuals and groups to form 
online communities sharing similar backgrounds and interests.
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NETWORK EXTERNALITIES

Much of the network literature describes the process whereby networks expand 
and contract, interconnections form, deform, dissolve, and reform. A distinguishing 
feature of markets for network goods is they generate positive feedback effects in 
which members receive uncompensated benefits as the network expands [see, for 
example, Easley and Kleinberg (2010, Chapters 16 and 17) and Economides (1996)]. 
If the increase in uncompensated benefits is substantial, network externalities may 
result in an upward-sloping demand curve. Network externalities may also help 
explain rapid increases in market demand during the introduction and growth phases 
of a network’s product life cycle.

There are at least two complementary effects that generate uncompensated 
network benefits. Direct effects occur when users receive uncompensated benefits 
by aligning their decisions, actions, and behaviors following a product innovation or 
the introduction of a complementary technology [see, for example, Katz and Shapiro 
(1985), Arthur (1990), Economides (1996), Shapiro and Varian (1998), Easley and 
Kleinberg (2010, Chapter 17)]. An oft-cited example of this is the fax machine, which 
is of little or no value to a lone user, but which becomes exponentially more valuable 
as the number of integrated users with access to this technology increases. Similarly, 
online social networks confer exponentially increasing uncompensated direct benefits 
as social groups expand and subsume each other.1

Another externality contributing to a network’s growth is information effects 
in which users make sequential decisions based on the observed behavior of others, 
even when their privately-held information suggests a different course of action. 
Information effects may culminate in an information cascade in which user behavior 
predicated on inference and innuendo feeds on itself.2 The decision to abandon private 
information in favor of suppositions drawn from the observed behavior of others 
is frequently emotional and impulsive, which may account for spasmodic network 
expansions or contractions. Information cascades (also referred to as herd behavior) 
tend to be fragile since decisions based on incomplete or incorrect information are 
quickly reversed.3

Information cascades, such as speculative bubbles in financial markets, can 
be difficult to recognize as they occur, even when comprehensive, real-time, and 
high-frequency data is available. Even when information cascades are correctly 
identified, describing the transmission mechanism and the conditions that instigated 
the contagion can be elusive, especially when the underlying network architecture is 
not well understood. In spite of this, several important studies have contributed to an 
understanding of the dynamics of information cascades   [see, for example, Lerman 
and Ghosh (2010), Alevy et al. (2007), Banerjee and Fudenberg (2004), Rogers 
(2003), Plott (2000), Bikhchandani and Sharma (2000), Allsopp and Hey (2000), 
Anderson and Holt (1997), and Banerjee (1992)]. While studies of virtual social and 
financial networks have resulted in a deeper understanding of information transmission 
mechanisms, the paucity of reliable and comprehensive data of conventional consumer 
network goods has handicapped the development of a more complete understanding of 
information contagions.

This study attempts to partially rectify this deficiency by analyzing the dynamic 
properties of active global subscriptions for history’s most popular massively 
multiplayer online role-playing game (MMORPG)—World of Warcraft (WoW). The 
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analysis begins with a brief review of the standard model of the market for network 
goods and its application to the product life cycle (PLC). The standard model suggests 
a theoretical framework for analyzing temporary, trend-reverting shocks associated 
with network effects. This review is followed by brief discussions of massively 
multiplayer online games (MMOG) and the emergence of WoW—the most successful 
massively multiplayer online role-playing game (MMORPG).

An impediment to the analysis of WoW network externalities is the absence of 
a comprehensive data set. The methodology used to resolve this data shortcoming 
is discussed in the data analysis section. This is followed by the application of 
augmented Dickey-Fuller (ADF) unit root tests to determine the stationarity of active 
subscriptions in each phase of the WoW PLC. Establishing stationarity is important 
since shocks become permanently embedded in nonstationary data resulting in never-
ending exponential growth—a phenomenon that is not normally observed in the real 
world. 

The analysis of stationary WoW active subscriptions is followed by a discussion 
of the data’s dynamic properties. Estimated half-lives of temporary shocks can be used 
as proxies for the relative strengths of trend-reverting network effects during each 
phase of the PLC. These trend-reverting properties have important implications for 
network publishers’ marketing strategies. The final section of this paper summarizes 
the main conclusions of this study and discusses the implications for viral and 
traditional marketing.

STANDARD MODEL OF THE MARKET FOR NETWORK GOODS

Network goods differ from pure private goods in that they exhibit positive 
feedback effects [see Katz and Shapiro (1985), Economides (1996), Shapiro and Varian 
(1998), and Easley and Kleinberg (2010, Chapter 17)]. According to the principle 
of diminishing marginal utility, the maximum price that buyers are prepared to pay 
for additional units of a pure private good decline with an increase in the quantity 
demanded.4 In the case of network goods, however, an increase in network size bestows 
uncompensated benefits on incumbent members. The result can be an upward-sloping 
demand curve at low membership levels, such as during the introduction and growth 
phases of the PLC. The demand curve for network goods begins to assume its familiar 
downward-sloping shape as the network good matures.

The reservation price of consumer x in the standard model may be described 
by a compound inverse demand function of the form f[E(xt)]r(xt), where xt is the 
contemporaneous share of the population expected to join the network in period t, 
r(xt) is the compensated reservation price, and f[E(xt)] the consumers’ uncompensated 
expected benefits.5 The model assumes that single-unit users with perfect expectations 
are indexed in ascending order according to their reservation prices in the half-open 
interval (0, 1].

To illustrate the structure of the standard model, suppose that reservation prices 
are linear and contemporaneous according to the equation r(xt) = 1 – xt, which has 
a parabolic shape. At a constant marginal cost, this model has two equilibria in the 
price interval [0, ¼) [see Figure 17.3 in Easley and Kleinberg (2010, p. 455)]. For 
values of p > ¼, x = 0. A price increase in the interval [0, ¼) results in an increase in 
the quantity demanded following a marginal increase in uncompensated benefits that 
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exceeds the marginal decrease in compensated benefits. The result is a reversal of the 
law of demand.

The sources of these uncompensated benefits have been identified in the literature 
as the direct and information network effects discussed earlier. Network effects play 
an important role in defining the structure of this market. At low membership levels, 
the demand curve intersects marginal cost from below. Thus, equilibria for market 
shares xt < ½, such would be found during the introduction and decline phases of the 
PLC, are unstable “tipping points,” Temporary shocks in this region can be expected 
to accelerate network growth during an information cascade or hasten its demise. By 
contrast, stable market equilibria for market shares xt > ½ when the demand curve 
is downward sloping are consistent with the maturity and decline phases of the PLC.

While shocks may occur during any phase of the PLC, incumbents and prospective 
users are less prone to make impulsive decisions once a network reaches maturity 
since by then the benefits of membership are well understood. For this reason, 
information cascades resulting from herding behavior are most likely to occur during 
the introduction and growth phases, which is consistent with the prediction of the 
standard model that tipping points exist at low levels of network membership. On the 
other hand, network shocks affecting network growth are more likely to be associated 
with the direct effects of product innovation or new technology during the maturity 
and decline phases.

MASSIVELY MULTIPLAYER ONLINE GAMES

The standard model of network goods assumes that single-unit users are indexed 
in ascending order according to their reservation prices in the half-open interval (0, 1]. 
The market for massively multiplayer online games (MMOGs) is a virtual network that 
satisfies this requirement. An MMOG is comprised of users (gamers), a World Wide 
Web protocol that formats and transmits gamer instructions (such as HTTP—hypertext 
transfer protocol), application servers that integrate gamers and servers, database servers 
that manage data storage and retrieval, and Internet service providers (ISPs). MMOGs 
simultaneously host millions of gamers in thousands of clusters in a continually updated 
interactive environment that accommodates a variety of Internet-capable platforms, 
such as personal computers, tablets, video game consoles, and smartphones. Access 
to online gameplay requires that individual users have dedicated active subscriptions. 
	 Online games are major contributors to Internet traffic. Prior to the late-
1990s, the development of graphic MMOGs was limited by capacity restrictions 
of dial-up modems. Beginning in the late-1990s, however, MMOGs experienced 
explosive growth due to the development of broadband Internet technology, 
which allowed for more complex graphics and audio features that enhanced the 
interactive gaming experience.6 By 2015, the number of active global MMOG 
subscribers had grown to more than 1.5 billion gamers worldwide. This surge 
in MMOG’s popularity was accompanied by an increasingly competitive online 
gaming industry in terms of the number of publishers, game genres, and titles. 
	 There are several MMOG genres including first-person shooter (FPS) games, 
massively multiplayer online role-playing games (MMORPGs), racing games, sports 
games, social games, fighting games, and puzzle games. MMOG genres differ in 
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terms of storylines, virtual environment, server updates, and speed of gameplay. 
MMORPGs and FPS games are the most popular MMOG genres in terms of active user 
subscriptions. FPS games are weapons-based combat scenarios experienced through 
the eyes of an avatar. FPS games are characterized by short sessions of rapid, drop in-
and-out play.7 By contrast, MMORPGs involve a large number of players interacting 
in virtual real-world, fantasy, science fiction, superhero, horror, and historical settings. 
Players create and develop a broad range of characters who complete a series of ever 
more challenging stages or “quests.” MMORPGs are slower-paced than FPS games 
and involve more prolonged gameplay. Some MMORPGs even allow for an exchange 
of virtual currency.8 

WORLD OF WARCRAFT

Prior to the release of World of Warcraft, the most popular MMORPG was Lineage, 
which was published in 1998 by South Korean video game developer NCsoft. By 
2004, active Lineage global subscriptions exceeded 3 million gamers. In that same 
year, Blizzard Entertainment, Inc. (Blizzard) of Irvine, California released WoW.9 In 
the next nine months, active WoW global subscriptions surpassed Lineage’s high-
water mark. By mid-2008, Lineage active subscriptions had fallen below 1 million 
gamers, while active WoW subscriptions eclipsed 11 million (see Figure 1). Two years 
later, NCsoft had shut down Lineage, while WoW active subscriptions peaked at 12 
million users.

The decline of the WoW franchise in the months that followed can be explained 
by a variety of reinforcing factors, including gamer ennui, evolving gamer tastes and 
preferences, and increased competition from rival online game publishers. After more 
than half a decade of MMOG market dominance, WoW had begun to show its age. 
Using the terminology of evolutionary biology, WoW became the victim of intragenus 
competition in which the dominant species became vulnerable to natural displacement 
by more successful subspecies.

DATA ANALYSIS

Identifying network externalities requires comprehensive, real-time, high-
frequency temporal data in which stochastic disturbances are minimized. Much of 
our understanding of information transmission mechanisms and network architecture 
comes from empirical research of social networks and financial market transactions 
[see, for example, Lerman and Ghosh (2010), Hogg and Lerman (2009), Leskovec and 
Horvitz (2008), Alvey et al. (2007), Leskovec et al. (2007), Liben-Nowell and Kleinberg 
(2007), Leskovec et al. (2006), Vazquez et al. (2006), Gruhl and Liben-Nowell (2004), 
Wu et al. (2004), and Bikhchandani and Sunil (2000)]. The dearth of reliable and 
consistent high-frequency time-series data, however, has handicapped the development 
of a deeper understanding of the dynamics of such network goods as online games. 
	 MMOG publishers tend to release comprehensive and consistent subscription 
data only when sales are robust, perhaps as a marketing ploy to stimulate product 
demand and burnish their corporate image. Blizzard, for example, routinely 
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released detailed monthly data as active WoW subscriptions skyrocketed during 
the first 15 months following its debut in October 2004. As the sales growth 
slowed in early-2006, however, the release of subscription data became more 
erratic as Blizzard began reporting sales data in its quarterly earnings reports. 
	 By the third quarter of 2015, active WoW subscriptions had fallen to around 5.5 
million subscribers.10 In September 2010, Blizzard announced that it would no longer 
release WoW subscription data, despite the fact that the total number of active subscriptions 
was still impressive by industry standards. The decision to suspend reporting sales data 
was widely interpreted as de facto recognition that WoW was nearing the end of its PLC. 
	 In the 131 months following its debut, Blizzard released data on active WoW 
subscriptions on average every 1.6 months. To analyze the dynamic properties of active 
WoW global subscriptions a more comprehensive data set was needed. The preferred 
empirical method for approximating missing observations is to regress the available 
data against a highly-correlated proxy. Unfortunately, the search for a suitable proxy 
was unsuccessful. The less satisfying approach used in this study involved a two-step 
process. The first step involved linearly interpolating missing monthly subscription 
data. The resulting data set was then exponentially smoothed and the resulting 
estimates substituted for the missing data.11 The data on active subscriptions used in 
this study are summarized in Figure 1.

AUGMENTED DICKEY-FULLER UNIT ROOT TEST

What is the evidence that the growth of WoW was at least partly attributable 
to the presence of network externalities? To answer this question it is necessary to 
determine whether active WoW subscriptions reverted to a long-run trend following 
temporary shocks, or did the data follow a random walk? If the data followed a random 
walk then we can conclude that network externalities played no role. On the other 
hand, a stationary time series suggests that direct and information network effects 
were not only present but had a persistent effect on future sales. This is an important 
consideration since it tells us something about the potency of word-of-mouth sales and 
the effectiveness of more traditional promotional efforts.

The test for stationary involves applying ordinary least squares (OLS) to 
estimate the parameters of an autoregressive time series given by the process 

                        st = α + βt + 𝜌st − 1 + ut                                                                                                                                 (1)

where st represents active subscriptions at time t. If β > 0 and 𝜌 < 1 then st is stationary 
after detrending. On the other hand, if α ≠ 0, β = 0 and 𝜌 = 1 then st follows a 
random walk with “drift.” This unmodified approach is problematic, however, since 
the Gauss-Markov conditions are violated. Standard tests of significance may not be 
valid because random walks do not have a finite variance. David Dickey and Wayne 
Fuller developed a test for determining the statistical significance of unit roots [see 
Fuller (1976) and Dickey and Fuller (1979, 1981)].

It is standard procedure when testing for random walks to include ∆st in Equation 
(1) since st (even when detrended) can yield spurious results. Moreover, it is not 
possible to test whether the estimated value of 𝜌 is statistically different from unity 
using a standard t-test. The reason for this is that when ρ = 1, OLS estimates are biased 
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towards zero, which could lead to incorrectly rejecting the random walk hypothesis. 
Dickey and Fuller (1981) overcame this problem by deriving a distribution to test the 
hypothesis that β = 0 and 𝜌 = 1. Sample critical F-values (F*) are presented in Table 1. 

An augmented Dickey-Fuller (ADF) unit root test proceeds as follows. First, as-
sume an autoregressive process of the form

		  st = α + βt + 𝜌st − 1 + γ∆st − 1 + ut							       (2)

where ∆st − 1 = st − 1 − st − 2. Subtracting st − 1 from both sides of Equation (2) yields the 
unrestricted equation

		  ∆st = α + βt + (𝜌 – 1)st − 1 + γ∆st – 1.						      (3)

After estimating Equation (3) with OLS, estimate the restricted equation

		  ∆st = α + γ∆st – 1.										          (4)

To test the null hypothesis that β = 0 and 𝜌 = 1, a Wald F-statistic is calculated 
using the error sum of squares (ESS) and degrees of freedom of the estimated 
unrestricted and restricted equations.12, 13 Table 2 summarizes the OLS estimates of the 
unrestricted (U) and restricted (R) equations for the entire sample period and for each 
phase of the PLC.14 Columns (2) to (5) summarize the parameter estimates for each 
regression. The numbers in parentheses are standard errors. Columns (6) and (7) report 
the corresponding ESS and degrees of freedom used to calculate the Wald F-statistics 
in Column (8).

Since FW > F* at the 1 and 5 percent confidence levels, the random-walk 
hypothesis is rejected for the entire sample period and for each phase of the PLC. 
Since active subscriptions may be characterized as a stationary time series, knowing 
how long it takes for a temporary shock to revert to its long-run trend has important 
marketing implications because it tells us something about the persistence of direct 
and information external effects on network growth.

 
 
DYNAMIC PROCESSES

 
	 The analysis presented in the preceding section suggests contributed to the growth 
of the WoW network. This section examines the dynamic properties of this time series 
and attempts to identify information and direct network effects. To distinguish these 
network effects, the restricted equation used in the ADF unit root tests was modified 
to explicitly account for the presence of direct effects. What remains should include 
information effects, if any.

Recall that direct effects occur when network users receive uncompensated 
benefits by aligning their decisions, actions, and behaviors in response to 
product innovations or complementary technologies. A game expansion is 
an example of such an innovation.15 During the period covered by this study, 
Blizzard released five expansions. The first of these gaming upgrades was 
The Burning Crusade, which was released in North America, Europe, Singapore, 
Thailand, and Malaysia on January 16, 2007 (indicated by ① in Figure 1).16 This 
was followed by its release in Australasia a day later; South Korea on February 
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1; Taiwan, Hong Kong, and Macau on April 30; and the Peoples Republic of 
China on September 30. This expansion was part of a marketing strategy to boost 
subscription sales. While the upsurge was substantial, sales growth continued 
to decelerate as WoW entered into the maturity phase of its PLC (See Figure 1). 
	 Blizzard released two more expansions during the 3-4 years of the maturity phase. 
Wrath of the Lich King was released on November 13, 2008, followed by Cataclysm 
on December 7, 2010 (see ② and ③ in Figure 1).17 While these expansions energized 
gamer interest, the effect on sales was less than for the first expansion. Blizzard 
responded to the downturn in new subscriptions with Mists of Pandaria, which was 
released on September 25, 2012 (see ④ in Figure 1).18 By this time, WoW was well 
into the decline phase of the PLC. Although the fourth expansion increased sales 
by roughly 3 million subscriptions, the games downward sales trajectory resumed a 
month later.

Warlords of Draenor was released on November 13, 2014 (see ⑤ in Figure 2), 
more than two years following the release of Mists of Pandaria. Sales of this fifth 
expansion were a disappointing 2.7 million in the first week following its release. While 
impressive in its own right, this increase was the lowest of any previous expansion. To 
make matters worse, there was no apparent resurgence in gamer interest. By the start 
of the second quarter of 2015, active subscriptions had fallen to 7.1 million—300,000 
fewer subscribers than before the release of Warlords of Draenor. On August 8, 2015, 
Blizzard announced that its global subscriber base had fallen to 5.6 million users—
the lowest level since 2005. WoW was approaching its denouement.19 By mid-2019, 
independent estimates put active WoW global subscriptions at around 4.5 million users. 
	 To capture the direct effects of these expansions, Equation (3) was modified as
	 ∆st = α + βt + (𝜌 – 1)st − 1 + γ∆st – 1 + 𝛿d					     (5)

where dt = 1 for the first and second month following the release of an expansion, and dt = 
0 otherwise. This dummy variable was set equal to unity for two sequential months to ac-
count for the benefits of an expansion to disseminate within the gaming community. Final 
parameter estimates and associated statistics for Equation (5) are summarized in Table 3. 
	 Columns (2) and (3) of Table 3 summarize the estimated constants and time 
index parameters, respectively. The time index indicates whether active subscriptions 
exhibited a long-run trend. The parameter estimates in Column (4) are used to test for 
a random walk. The numbers in parenthesis are t-statistics to test the null hypothesis ρ 
= 1 (i.e., a unit root) against the alternative hypothesis ρ < 1. (ρ – 1) not statistically 
different from zero implies that ρ = 1, i.e., a random walk. No random walk requires 
rejection of the null hypothesis that (𝜌 – 1) = 0 in favor of its alternative (𝜌 – 1) < 0. 
	 Standard t-tests to determine statistical significance is inappropriate when st is 
nonstationary. Since the central limit theorem does not apply, (𝜌 – 1) does not have the 
usual t-distribution. Once again, David Dickey and Wayne Fuller (1979, 1981) came 
to the rescue by calculating the asymptotic distribution of OLS estimates of (𝜌 – 1) 
under the unit-root hypothesis. These critical values (DFc) are reported in the square 
brackets below each t-statistic. If t > DFc (i.e., that ρ = 1) then it is not possible to 
reject the null hypothesis of a unit root, in which case we must conclude that active 
subscriptions follow a random walk, that is, there are no network effects. If (ρ – 1) < 1 
then t will be negative. DFc < 0 will lead to a rejection of the null hypothesis of a unit 
root.
	 Column (5) of Table 3 summarizes the estimated parameters of ∆st – 1. A statis-
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tically significant explanatory variable indicates that active subscriptions constitute 
a second-order autoregressive process. The addition of this variable was necessary 
to correct for serial correlation, which can inflate the estimated t-statistics and make 
t-tests unreliable. Column (6) tells us whether the release of new expansions had 
a statistically significant effect on new subscriptions. Columns (7) and (8) include 
test statistics for first-order serial correlation. Column (7) summarizes the familiar 
Durbin-Watson (DW) statistic. Column (8) reports Lagrange multiplier statistics 
where LM = (n – 1)R2 follows a chi-square distribution. The numbers in parentheses 
are the associated critical values at the 5 percent confidence level [LMc = χ2(0.05)]. 
We should reject the null hypothesis of first-order serial correlation when LM < LMc. 
	 Finally, Column (9) summarizes the estimated half-lives of temporary 
shocks, which were derived from the solutions to the corresponding first- and sec-
ond-order difference equations. Half-lives indicate how long in months it will 
take for a temporary shock to decay by half. Estimated half-lives indicate the per-
sistence of shocks to the network. For example, suppose that the release of a 
new expansion that initially boosts sales by 100 subscriptions has a half-life of 
two years. The number of sales accounted for by the expansion after two years is 
50 thousand subscriptions; 25 thousand subscriptions two years after that, so 
on. An increase in a half-life translates into a greater overall impact on sales. 
	 Recall that if β > 0 and ρ < 1, st will be stationary after detrending. The pa-
rameter estimates and statistics summarized in Table 3 support the findings of the 
ADF unit root tests in Table 2 that active subscriptions were stationary overall and 
for each phase of the PLC. That is, we reject the random walk hypothesis since t 
> DFc. The results presented in Table 3 indicate that new expansions had a statisti-
cally significant effect on sales during the maturity and decline phases of the PLC. 
While new expansions boosted sales an average of 194 thousand active subscriptions 
overall, estimated half-lives steadily declined. New expansions during the maturity 
phase, which boosted sales by about 272 thousand active subscriptions, had a half-
life of around 9 months. New expansions during the decline phase increased sales 
by about 1.5 million subscribers, although half-lives fell to less than two months. 
	 Significantly, although the release of The Burning Crusade during the 
growth phase was statistically insignificant, temporary shocks had a half-life 
of almost 2 years. Moreover, there is no evidence of a positive trend during the 
growth phase, even though the WoW subscriber base expanded rapidly dur-
ing this period. What accounted for the network’s rapid growth? One possi-
ble explanation was word-of-mouth sales that led to an information contagion. 
	 The above analysis supports the idea that active subscriptions were stationary; that 
network effects were trend-reverting, and that temporary shocks as measured by half-lives 
diminished over time. These results are amplified by examining the dynamic properties 
of the estimated equations in Table 3. The solutions to the corresponding first- and second-
order linear difference equations are summarized in Table 4 and depicted in Figures 2 to 5. 
	 Figure 2, for example, depicts the solution to the second-order difference equa-
tion for the entire PLC in Table 4. This solution assumes initial conditions of zero 
sales in period 0 [s(0) = 0], sales in period t = 1 of 100 thousand subscriptions [s(1) 
= 100], and no expansions (d = 0). The dashed line illustrates the time trend during 
this period, while the solid line represents the time path of active subscriptions follow-
ing a temporary shock for a period of 100 months (8.3 years). The reader can verify 
by inspection that the half-life of temporary disturbances during the entire PLC was 
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20.4 months. That is, it took about 1.7 years for a temporary shock to decay by half; 
another 1.7 years to decay by half again, and so on. Overall, it took about 7 years 
for a temporary shock to converge to within around 5 percent of the long-run trend. 
 
 
SUMMARY AND CONCLUSIONS

	 This paper examined network externalities and their possible relation-
ship to the product life cycle of history’s most popular massively multiplay-
er online game—World of Warcraft. This study began with a discussion of 
two complementary network externalities. Network users receive direct ben-
efits when they aligning their behavior following the introduction of innova-
tive or complementary technologies. Information effects occur when network us-
ers make sequential decisions based on the observed behavior of incumbents. 
	 This study found using augmented Dickey-Fuller unit roots tests that active 
global subscriptions during all phases of the product life cycle were stationary, i.e., 
that temporary shocks were trend reverting. The study also found that direct benefits 
to users from new game expansions were statistically insignificant during the intro-
duction and growth phases of the product life cycle, but were important in boost-
ing sales during the maturity and decline phases. This suggests that rapid early net-
work growth may have been the result of word-of-mouth sales resulting in an in-
formation cascade. Finally, the persistence of temporary shocks that increased sales 
as measured by their half-lives was significant (almost 9 years) during the growth 
phase, but which steadily diminished over time. This suggests that efforts to boost 
sales by releasing new expansions met with declining success as World of War-
craft neared the end of its product life cycle, perhaps because of gamer ennui. 
	 The practical significance of these results from a business perspective is the 
potential importance of viral marketing. Steve Jurvetson (2000) defines viral mar-
keting as “network-enhanced word of mouth.” According to Professor Jurvetson, 
“every consumer becomes an involuntary salesperson simply by using the product” 
(p. 110). This is a restatement of a network’s information effect whereby current and 
prospective users make sequential decisions based on the observed behavior of others, 
even when privately-held information suggests following a different course of action. 
	 Information cascades from viral marketing can be more effective than traditional 
advertising if it involves the implicit endorsement of trusted incumbent users. Ide-
ally, word-of-mouth marketing will metastasize into an information cascade, such as 
occurred with the launch of email service provider Hotmail in 1996. Hotmail, which 
was acquired by Microsoft in 1997 for an estimated $400 million, included a clickable 
URL (web address) with each email to encourage recipients to adopt the service. The 
resulting network explosion resembled a viral contagion as Hotmail’s subscriber base 
grew from zero to 12 million users in 18 months—all on an advertising budget of just 
$50,000. Rather than waiting until its email service had seasoned, the early launch 
was an important contributing factor in the success of Hotmail’s marketing strategy. 
Hotmail’s success was not dissimilar to the experience of World of Warcraft during its 
introduction and growth phases.
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ENDNOTES

1.	 Individuals may join social network websites or purchase fax machines because 
personal or business acquaintances have done so, or because the network provides 
access to a wider circle of potential contacts resulting in an increase in beneficial 
interactions. Lin and Lu (2011) argued that enjoyment is the most important factor 
in the decisions to join social networks, followed by the number of peers in the 
network, and the network’s overall usefulness.

2.	 Information cascades are attributable to the work of Banerjee (1992), Welch 
(1992), Bikhchandani et al. (1992, 1998), and Milgram et al. (1969).

3.	 While these terms are frequently used interchangeably, Smith and Sørensen 
(2000) argued that information cascades occur when users ignore privately-held 
information when making sequential decisions, whereas this is not necessarily 
the case with herd behavior. The present study makes no effort to fine-tune these 
definitions.

4.	 Pure private goods are excludable in that payers can deny nonpayers from enjoy-
ing their benefits. In other words, private goods are rivalrous in that consumption 
by one user rules out the simultaneous consumption by others. Pure private goods 
do not produce third-party effects (externalities). Consumers and producers enjoy 
all of the benefits, but also incur all of the costs.

5.	 This compound function is a continuous and strictly monotonically increasing 
function of xt. The inverse market demand equation r(xt) is assumed to be strictly 
decreasing and twice differentiable.

6.	 See Che and Ip (2012) and Chen et al. (2006) for an analysis of the impact of 
online gaming on Internet traffic. According to Che and Ip (2012), the growth of 
online gaming traffic volume poses serious challenges to servers and ISPs that 
rely on the efficient flow of Internet traffic.

7.	 Non-MMORPG genres, such as FPS Counter Strike (released in 1999), are rela-
tively parsimonious in terms of their data and system requirements. User instruc-
tions comprise a few simple commands, such as “walk,” “chat,” “rest,” and “at-
tack.” By contrast, narratively elaborate MMORPGs place much greater demands 
on the Internet infrastructure. According to Chen et al. (2006), the number of 
active MMORPG subscriptions exceeded 500 million in 2005, with the six most 
popular titles accounting for 3-4 percent of total Internet traffic.

8.	 Virtual currency issued by software developers circulates as a medium of ex-
change among the members of online gaming communities. Gamers use virtual 
money to purchase “add-ons,” such as maps, extended storylines, antagonists, 
weapons to enhance the gaming experience. “Gold farmers” sell accumulated vir-
tual currency for cash on websites that are separate from the game itself. 

9.	 Blizzard Entertainment is a subsidiary of Activision Blizzard. Founded in 1991 
as Silicon and Synapse, the company changed its name to Chaos Studios in 1994. 
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In 2008, Activision Publishing merged with Vivendi Games. In 2013, Activision 
Blizzard was born following a takeover of its then majority shareholder Vivendi.

10.	 According to Guinness World Records, World of Warcraft is the most popular 
MMORPG in history. In January 2014, Blizzard announced that more than 100 
million user accounts had been created over the game’s lifetime.

11.	 The exponential smoothing formula used in this study was st = αxt + (1 – α)st – 1, 
where st is the smoothed observation, xt is the current observation, and 0 < α < 1 is 
a smoothing factor. The values of the smoothing factor that are close to unity have 
a lesser smoothing effect and give greater weight to recent observations. Values of 
α closer to zero have a greater smoothing effect and are less responsive to recent 
changes. Trial-and-error selection of the smoothing factor reflects the author’s 
judgment, which in this study was α = 0.3.

12.	 The test will remain the same when additional ∆st lags are added to the right side 
of Equation (2).

13.	 The Wald F-statistic was calculated as Fw = [(ESSR – ESSU)/(dfR – dfU)]/(ESSU/
dfU).

14.	 Phases of the PLC were subjectively identified and include one-month overlaps.

15.	 An online game expansion supplements an existing MMOG. Expansions extend 
existing storylines, introduce new quests, stages, avatars, virtual environments, 
combat scenarios, weapons, appliances, utilities, and so on.

16.	 Although the launch of The Burning Crusade was plagued by server crashes, sales 
of nearly 2.4 million in the first 24 hours made WoW the fastest-selling online 
computer game up to that time.

17.	 On its first day of release, Wrath of Lich King sales were more than 2.8 million. 
On its first day, Cataclysm sales were more than 3.3 million. Both releases solidi-
fied WoW’s reputation as the most successful online computer game ever.

18.	 Sales of Mists of Pandaria were a disappointing 2.7 million in the first week fol-
lowing its release.

19.	 Blizzard released a sixth WoW expansion (Legion) on August 30 2016, and on 
November 3, 2017, released a seventh WoW expansion (Battle of Azeroth). Both 
of these releases fall outside the period examined in this study. An eighth expan-
sion, Shadowlands, was announced by Blizzard, on November 1, 2019
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FIGURE 1
WORLD OF WARCRAFT PRODUCT LIFE CYCLE

Notes: Actual (•) and fitted (+) subscription data.

TABLE 1
CRITICAL DICKEY-FULLER F* DISTRIBUTION

Probability of a smaller value
N 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
25 0.74 0.90 1.08 1.33 5.94 7.24 8.65 10.61
50 0.76 0.93 1.11 1.37 5.61 6.73 7.81 9.31
100 0.76 0.94 1.12 1.38 5.47 6.49 7.44 8.73
250 0.76 0.94 1.13 1.39 5.39 6.34 7.25 8.43
500 0.76 0.94 1.13 1.39 5.36 6.30 7.20 8.34
∞ 0.77 0.94 1.13 1.39 5.34 6.25 7.6 8.27
se 0.004 0.004 0.003 0.004 0.015 0.020 0.032 0.058

Source: Dickey & Fuller (1981), Table VI, p. 1063.
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TABLE 2
DICKEY-FULLER TESTS WORLD OF WARCRAFT PRODUCT LIFE 

CYCLE

(1)
Phase

(2)
α

(3)
β

(4)
(ρ − 1)

(5)
γ

(6)
ESS

(7)
df

(8)
Fw

PLC (U)

PLC (R)

404.33
(105.09)

22.04
(29.01)

−2.65
(0.85)

−0.02
(0.01)

0.26
(0.09)
0.42

(0.08)

1.16E+07

1.34E+07

123

126

61.97

Growth (U)

Growth (R)

503.93
(116.03)
226.31
(57.69)

17.07
(14.36)

−0.10
(0.06)

0.03
(0.17)
0.13

(0.17)

1.69E+06

2.07E+06

34

36

38.50

Maturity (U)

Maturity (R)

1334.26
(491.23)
−6.88

(28.69)

−5.35
(1.83)

−0.09
(0.04)

0.22
(0.13)
0.29

(0.13)

2.35E+06

2.77E+06

55

57

49.19

Decline (U)

Decline (R)

3248.54
(1730.62)
−92.02
(88.75)

−14.30
(10.56)

−0.22
(0.09)

0.44
(0.17)
0.32

(0.17)

6.29E+06

7.52E+06

29

31

28.37

Note: Numbers in parentheses are standard errors.
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TABLE 3
EQ. (5) FINAL PARAMETER ESTIMATES.*

(1)
Phase

(2)
α

(3)
β

(4)
(ρ − 1)*

(5)
γ

(6)
δ

(7)
DW

(8)
LM**

(9)
Half-life

PLC 408.83
(4.14)

−2.65
(−3.20)

−0.03
(−2.48)
[−3.45]†

0.217
(2.53)

193.96
(2.26)

1.96 0.45
(165.85)

20.4

Growth 447.38
(5.45)

−0.03
(−2.53)†
[−2.94]

1.98 0.09
(59.91)

22.0

Maturity 1247.80
(2.69)

−6.27
(−3.75)

−0.08
(−2.13)†
[−3.49]

272.28
(3.23)

1.64 1.55
(84.75)

8.7

Decline 5853.05
(3.51)

−30.43
(−3.02)

−0.33
(−3.88)‡
[−4.26]

1504.89
(4.40)

1.70 0.97
(52.21)

1.7

* Numbers in parentheses are t-statistics. Numbers in square 
brackets are right critical Dickey-Fuller values. 
** The critical Lagrange multiplier values for the test of serial 
correlation are in the parentheses. Accept the hypothesis of no serial 
correlation when. 
† It is not possible to reject the null hypothesis of a unit root (ρ = 1) 
at the right 0.05 critical value.	  
‡ It is not possible to reject the null hypothesis of a unit root (ρ = 1) 
at the right 0.01 critical value
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TABLE 4
ACTIVE SUBSCRIPTION DIFFERENCE EQUATIONS

Phase Solutions Figure
PLC st  = −16,286.28(0.97)t + 561.97(0.23)t + 15,724.31 – 101.92t 2
Growth st  = 500(0.97)t + 14,431.61 3
Maturity st  = −15,705.16(0.92)t + 16,205.16 – 81.36t 4
Decline st  = −17,024.11(0.67)t + 1,752.11 – 91.11t 5

FIGURE 2
SOLVED PLC SECOND-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 0; s(1) = 100, t(0) = 0, t(1) = 1, and d 
= 0.
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FIGURE 3
SOLVED GROWTH PHASE FIRST-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 500 and t(0) = 0.

FIGURE 4
SOLVED MATURITY PHASE FIRST-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 500 and t(0) = 0.
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FIGURE 5
SOLVED DECLINE PHASE FIRST-ORDER DIFFERENCE EQUATION

Note: The assumed initial conditions are s(0) = 500, t(0) = 0 and d = 0.
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